Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Discovery Of An Apoptosis Inducing Ligand For Burkitt Lymphoma, Carolyn Laymon, Kyla Bradylong, Mary Saunders, David Olivos, Kit Lam Aug 2011

Discovery Of An Apoptosis Inducing Ligand For Burkitt Lymphoma, Carolyn Laymon, Kyla Bradylong, Mary Saunders, David Olivos, Kit Lam

STAR Program Research Presentations

One-bead two-compound (OB2C) combinatorial chemistry libraries enable the discovery of novel synthetic compounds which can be used to evoke specific signaling response in cells. The library configuration is composed of a fixed known cell adhesion ligand and a random chemical library displayed on the surface of Tentagel beads. The cell adhesion ligand binds to specific receptors located on the surface of cells enabling the random immobilized chemical molecules on each bead resin bead to evoke specific cellular responses such as apoptosis or cell death. To validate this concept, a OB2C combinatorial library comprised of an α4β1 integrin targeting ligand, LLP2A, …


Ischemia Impairs Vasodilation In Skeletal Muscle Resistance Artery, Kyle Remington Struthers Jun 2011

Ischemia Impairs Vasodilation In Skeletal Muscle Resistance Artery, Kyle Remington Struthers

Master's Theses

Functional vasodilation in arterioles is impaired with chronic ischemia. We sought to examine the impact of chronic ischemia and age on skeletal muscle resistance artery function. To examine the impact of chronic ischemia, the femoral artery was resected from young (2-3mo) and adult (6-7mo) mice and the profunda femoris artery diameter was measured at rest and following gracilis muscle contraction 14 days later using intravital microscopy. Functional vasodilation was significantly impaired in ischemic mice (14.4±4.6% vs. 137.8±14.3%, p<0.0001 n=8) and non-ischemic adult mice (103.0±9.4% vs. 137.8±14.3%, p=0.05 n=10). In order to analyze the cellular mechanisms of the impairment, a protocol was developed to apply pharmacological agents to the experimental preparation while maintaining tissue homeostasis. Endothelial and smooth muscle dependent vasodilation were impaired with ischemia, 39.6 ± 13.6% vs. 80.5 ± 11.4% and 43.0 ± 11.7% vs. 85.1 ± 10.5%, respectively. From this data, it can be supported that smooth muscle dysfunction is the reason for the observed impairment in arterial vasodilation.