Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Hyperhomocysteinemia As A Risk Factor For Vascular Contributions To Cognitive Impairment And Dementia, Brittani R. Price, Donna M. Wilcock, Erica M. Weekman Oct 2018

Hyperhomocysteinemia As A Risk Factor For Vascular Contributions To Cognitive Impairment And Dementia, Brittani R. Price, Donna M. Wilcock, Erica M. Weekman

Physiology Faculty Publications

Behind only Alzheimer’s disease, vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia, affecting roughly 10–40% of dementia patients. While there is no cure for VCID, several risk factors for VCID, such as diabetes, hypertension, and stroke, have been identified. Elevated plasma levels of homocysteine, termed hyperhomocysteinemia (HHcy), are a major, yet underrecognized, risk factor for VCID. B vitamin deficiency, which is the most common cause of HHcy, is common in the elderly. With B vitamin supplementation being a relatively safe and inexpensive therapeutic, the treatment of HHcy-induced VCID would seem straightforward; however, …


Binge Alcohol Exposure Causes Neurobehavioral Deficits And Gsk3Β Activation In The Hippocampus Of Adolescent Rats, Zhe Ji, Lin Yuan, Xiong Lu, Hanqing Ding, Jia Luo, Zun-Ji Ke Feb 2018

Binge Alcohol Exposure Causes Neurobehavioral Deficits And Gsk3Β Activation In The Hippocampus Of Adolescent Rats, Zhe Ji, Lin Yuan, Xiong Lu, Hanqing Ding, Jia Luo, Zun-Ji Ke

Pharmacology and Nutritional Sciences Faculty Publications

Heavy alcohol exposure causes profound damage to the adolescent brain, particularly the hippocampus, which underlie some behavioral deficits. However, the underlying molecular mechanisms remain inconclusive. The current study sought to determine whether binge alcohol exposure affects the hippocampus-related behaviors and key signaling proteins that may mediate alcohol neurotoxicity in adolescent rats. Alcohol exposure reduced the number of both NeuN-positive and doublecortin-positive cells in the hippocampus. Alcohol also induced neurodegeneration which was confirmed by ultrastructural analysis by electronic microscopy and was accompanied with the activation of microglia. Binge alcohol exposure impaired spatial learning and memory which was evaluated by the Morris …


Thiamine Deficiency And Neurodegeneration: The Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, And Autophagy, Dexiang Liu, Zunji Ke, Jia Luo Sep 2017

Thiamine Deficiency And Neurodegeneration: The Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, And Autophagy, Dexiang Liu, Zunji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in …


Human Calmodulin Methyltransferase: Expression, Activity On Calmodulin, And Hsp90 Dependence, Sophia Magen, Roberta Magnani, Sitvanit Haziza, Eli Hershkovitz, Robert Houtz, Franca Cambi, Ruti Parvari Dec 2012

Human Calmodulin Methyltransferase: Expression, Activity On Calmodulin, And Hsp90 Dependence, Sophia Magen, Roberta Magnani, Sitvanit Haziza, Eli Hershkovitz, Robert Houtz, Franca Cambi, Ruti Parvari

Horticulture Faculty Publications

Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34) has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional …


Targeting Astrocytes Ameliorates Neurologic Changes In A Mouse Model Of Alzheimer's Disease, Jennifer L. Furman, Diana M. Sama, John C. Gant, Tina L. Beckett, M. Paul Murphy, Adam D. Bachstetter, Linda J. Van Eldik, Christopher M. Norris Nov 2012

Targeting Astrocytes Ameliorates Neurologic Changes In A Mouse Model Of Alzheimer's Disease, Jennifer L. Furman, Diana M. Sama, John C. Gant, Tina L. Beckett, M. Paul Murphy, Adam D. Bachstetter, Linda J. Van Eldik, Christopher M. Norris

Pharmacology and Nutritional Sciences Faculty Publications

Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer's disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically "activated" phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific …


Active Site Mutations Change The Cleavage Specificity Of Neprilysin., Travis Sexton, Lisa J. Hitchcook, David W. Rodgers, Luke H. Bradley, Louis B. Hersh Feb 2012

Active Site Mutations Change The Cleavage Specificity Of Neprilysin., Travis Sexton, Lisa J. Hitchcook, David W. Rodgers, Luke H. Bradley, Louis B. Hersh

Molecular and Cellular Biochemistry Faculty Publications

Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid β1-40. For example, NEPF563I displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E was less discriminating …