Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Proteomics Of Human Liver Membrane Transporters: A Focus On Fetuses And Newborn Infants., Bianca D. Van Groen, Evita Van De Steeg, Miriam G. Mooij, Marola M H Van Lipzig, Barbara A E De Koning, Robert M. Verdijk, Heleen M. Wortelboer, R Gaedigk, Chengpeng Bi, J Steven Leeder, Ron H N Van Schaik, Joost Van Rosmalen, Dick Tibboel, Wouter H. Vaes, Saskia N. De Wildt Nov 2018

Proteomics Of Human Liver Membrane Transporters: A Focus On Fetuses And Newborn Infants., Bianca D. Van Groen, Evita Van De Steeg, Miriam G. Mooij, Marola M H Van Lipzig, Barbara A E De Koning, Robert M. Verdijk, Heleen M. Wortelboer, R Gaedigk, Chengpeng Bi, J Steven Leeder, Ron H N Van Schaik, Joost Van Rosmalen, Dick Tibboel, Wouter H. Vaes, Saskia N. De Wildt

Manuscripts, Articles, Book Chapters and Other Papers

BACKGROUND: Hepatic membrane transporters are involved in the transport of many endogenous and exogenous compounds, including drugs. We aimed to study the relation of age with absolute transporter protein expression in a cohort of 62 mainly fetus and newborn samples.

METHODS: Protein expressions of BCRP, BSEP, GLUT1, MCT1, MDR1, MRP1, MRP2, MRP3, NTCP, OCT1, OATP1B1, OATP1B3, OATP2B1 and ATP1A1 were quantified with LC-MS/MS in isolated crude membrane fractions of snap-frozen post-mortem fetal and pediatric, and surgical adult liver samples. mRNA expression was quantified using RNA sequencing, and genetic variants with TaqMan assays. We explored relationships between protein expression and age …


Cysteine Residues Contribute To The Dimerization And Enzymatic Activity Of Human Nuclear Dutp Nucleotidohydrolase (Ndut)., Shawna M Rotoli, Julia L Jones, Salvatore J Caradonna Oct 2018

Cysteine Residues Contribute To The Dimerization And Enzymatic Activity Of Human Nuclear Dutp Nucleotidohydrolase (Ndut)., Shawna M Rotoli, Julia L Jones, Salvatore J Caradonna

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

dUTPase is an enzyme found in all organisms that have thymine as a constituent of DNA. Through evolution, humans have two major isoforms of dUTPase: a mitochondrial (mDut) and a nuclear (nDut) isoform. The nuclear isoform of dUTPase is a 164-amino-acids-long protein containing three cysteine residues. nDut's starting methionine is post-translationally cleaved, leaving four unique amino acids on its amino-terminus including one cysteine residue (C3). These are not present in the mitochondrial isoform (mDut). Using mass spectrometry analyses of recombinant dUTPase constructs, we have discovered an intermolecular disulfide bridge between cysteine-3 of each nDut monomer. We have found that these …


N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …