Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Targeted And Controlled Anticancer Drug Delivery And Release With Magnetoelectric Nanoparticles, Alexandra Rodzinski Nov 2016

Targeted And Controlled Anticancer Drug Delivery And Release With Magnetoelectric Nanoparticles, Alexandra Rodzinski

FIU Electronic Theses and Dissertations

A major challenge of cancer treatment is successful discrimination of cancer cells from healthy cells. Nanotechnology offers multiple venues for efficient cancer targeting. Magnetoelectric nanoparticles (MENs) are a novel, multifaceted, physics-based cancer treatment platform that enables high specificity cancer targeting and externally controlled loaded drug release. The unique magnetoelectric coupling of MENs allows them to convert externally applied magnetic fields into intrinsic electric signals, which allows MENs to both be drawn magnetically towards the cancer site and to electrically interface with cancer cells. Once internalized, the MEN payload release can be externally triggered with a magnetic field. MENs uniquely allow …