Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research

Dissertations & Theses (Open Access)

Cancer

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

A Microfluidics-Based Approach For Isolation Of Antigen-Specific Cd8+ T Cells, Meredith Frank Aug 2022

A Microfluidics-Based Approach For Isolation Of Antigen-Specific Cd8+ T Cells, Meredith Frank

Dissertations & Theses (Open Access)

Cancer is a global epidemic: there are predicted to be 200 million new cases this year alone. Almost a quarter of all cancer-related deaths are caused by lung cancer, for which 5-year survival rates are just above 20%. 85% of lung cancer diagnoses are classified as non-small cell lung cancer (NSCLC) for which 5-year survival rates in metastatic disease are less than 10%. Early detection and targeted therapies have improved prognoses, yet relapse is still common among patients.

Immunotherapies that leverage tumor-specific CD8+ cytotoxic T cells have shown great promise for the treatment of NSCLC. However, although highly promising, …


Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula Aug 2021

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula

Dissertations & Theses (Open Access)

G-quadruplexes are non-B DNA structures formed by four or more runs of repeated guanines that confer unique features to living organism’s genomes. These sequences are enriched in regulatory regions, such as promoters and 5’ UTRs, and have distinct regulatory roles in both health and disease states. Even though previous studies showed the impact of G4 in gene expression, none of them summarized the location-specific effect of G4. Also, there is no broad understanding about the most common G4 repeat in the human genome, named here as G4-22, and how it links to the evolution of mammals and their biology. In …


Unraveling Host-Gut Microbiota Dialogue And Its Impact On Response To Immune Checkpoint Blockade, Alexandria Cogdill May 2021

Unraveling Host-Gut Microbiota Dialogue And Its Impact On Response To Immune Checkpoint Blockade, Alexandria Cogdill

Dissertations & Theses (Open Access)

Cancer is a disease with only one degree of separation, affecting one in two men and one in three women in their lifetimes; accounting for 1 of every 6 deaths. While cancer mortality rates continue to improve, incidence rates are expected to rise and shift through 2050 due to epidemiological and demographic transitions worldwide. As such, it is imperative to continue to investigate and improve our understanding of both disease etiology and hallmarks of response to treatment. Currently, conventional therapies include, but are not limited to, surgery, chemotherapy, and radiotherapy. However, within the past decade, major advances have been made …


The Role Of Tumor Suppressor Dear1 In The Acquisition Of Mammary Stem/Progenitor Cell Properties, Uyen Le Dec 2018

The Role Of Tumor Suppressor Dear1 In The Acquisition Of Mammary Stem/Progenitor Cell Properties, Uyen Le

Dissertations & Theses (Open Access)

Breast cancer is the most commonly diagnosed cancer in women in America. Ductal carcinoma in situ (DCIS), one of the earliest pre-invasive forms of invasive ductal carcinoma (IDC), has a 30-50% risk of progressing to IDC. Understanding the mechanisms regulating progression from DCIS to IDC would help identify biomarkers to stratify patients at higher risk of progression or metastasis. Cumulative literature suggests the earliest phase of dissemination from the primary tumor is driven by the epithelial-mesenchymal transition (EMT) program. DEAR1 is a tumor suppressor gene which is mutated, undergoes loss of heterozygosity in breast cancer, and is downregulated in DCIS …


Multilevel Deregulation Of Survival Mechanisms In Npm-Alk+ T-Cell Lymphoma, Deeksha Vishwamitra May 2015

Multilevel Deregulation Of Survival Mechanisms In Npm-Alk+ T-Cell Lymphoma, Deeksha Vishwamitra

Dissertations & Theses (Open Access)

The anaplastic lymphoma kinase (ALK) is a single chain transmembrane receptor tyrosine kinase that belongs to the insulin receptor superfamily. Other members of this superfamily include the insulin receptor (IR), type I insulin-like growth factor receptor (IGF-IR), and the leukocyte tyrosine kinase. The common structural finding among these tyrosine kinases is the YXXXYY motif present within their respective tyrosine kinase domains. Binding of its ligands causes ALK receptor homodimerization and protein kinase activation. ALK has been previously shown to play a significant role during early developmental stages. In human embryos, the expression of ALK is mainly seen in …


Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee Dec 2014

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee

Dissertations & Theses (Open Access)

Cancer cells display dramatic alterations in cellular metabolism to meet their needs of increased growth and proliferation. In the last decade, cancer research has brought these pathways into focus, and one emerging issue that has come to attention is that many oncogenes and tumor-suppressors are intimately linked to metabolic regulation (Jones and Thompson, 2009). One of the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). LKB1 is the major upstream kinase of the evolutionarily conserved metabolic sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK pathway provides a survival advantage for cells under energy stress. LKB1 forms a heterotrimeric …


Gain-Of-Function Mouse Models To Investigate Biological Roles Of Prmt6, Alessandra Di Lorenzo May 2014

Gain-Of-Function Mouse Models To Investigate Biological Roles Of Prmt6, Alessandra Di Lorenzo

Dissertations & Theses (Open Access)

Gain-of-function Mouse Models to Investigate Biological Roles of PRMT6

Alessandra Di Lorenzo, Ph.D. Candidate

Mentor: Dr. Mark T. Bedford

Protein Arginine Methyltransferase 6 (PRMT6) is the histone tail writer that methylates the H3R2 (arginine 2 of histone H3) residue, which counteracts the activating H3K4me3 mark. PRMT6 has been shown to behave both as transcriptional co-repressor (i.e. trhrombospondin-1, p21, p53), and co-activator (nuclear receptors). The co-repressor function of PRMT6 is likely the result of H3K4me3 antagonism, while the mechanism by which PRMT6 exerts its co-activator function has yet to be elucidated. PRMT6 is over-expressed in several types of tumors including small …


Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall May 2012

Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall

Dissertations & Theses (Open Access)

The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are …


Understanding Acquired Resistance To Lapatinib In Breast Cancer Cells, Jen-Te Tseng Aug 2010

Understanding Acquired Resistance To Lapatinib In Breast Cancer Cells, Jen-Te Tseng

Dissertations & Theses (Open Access)

Signaling through epidermal growth factor receptor (EGFR/ErbB) family members plays a very important role in regulating proliferation, development, and malignant transformation of mammary epithelial cells. ErbB family members are often over-expressed in human breast carcinomas. Lapatinib is an ErbB1 and ErbB2 tyrosine kinase inhibitor that has been shown to have anti-proliferative effects in breast and lung cancer cells. Cells treated with Lapatinib undergo G1 phase arrest, followed by apoptosis. Lapatinib has been approved for clinical use, though patients have developed resistance to the drug, as seen previously with other EGFR inhibitors. Moreover, the therapeutic efficacy varies significantly within the patient …