Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Kinesiology

Biological Sciences Faculty Publications

Kinematics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Turning Performance Of Brief Squid Lolliguncula Brevis During Attacks On Shrimp And Fish, Rachel A. Jastrebsky, Ian K. Bartol, Paul S. Krueger Mar 2017

Turning Performance Of Brief Squid Lolliguncula Brevis During Attacks On Shrimp And Fish, Rachel A. Jastrebsky, Ian K. Bartol, Paul S. Krueger

Biological Sciences Faculty Publications

Although squid are generally considered to be effective predators, little is currently known of how squid maneuver and position themselves during prey strikes. In this study, high-speed video and kinematic analyses were used to study attacks by the brief squid Lolliguncula brevis on both shrimp and fish. Squid attack successwas high (>80%) and three behavioral phases were identified: (1) approach, (2) strike and (3) recoil. Lolliguncula brevis demonstrated greater maneuverability (i.e. a smaller length-specific turning radius) and employed more body adjustments (i.e. mantle angle posturing) during approaches toward shrimp versus fish. Squid exhibited higher linear approach/strike velocities and accelerations …


Evidence Of Self-Correcting Spiral Flows In Swimming Boxfishes, I. K. Bartol, M. S. Gordon, P. Webb, D. Weihs, M. Gharib Jan 2008

Evidence Of Self-Correcting Spiral Flows In Swimming Boxfishes, I. K. Bartol, M. S. Gordon, P. Webb, D. Weihs, M. Gharib

Biological Sciences Faculty Publications

The marine boxfishes have rigid keeled exteriors (carapaces) unlike most fishes, yet exhibit high stability, high maneuverability and relatively low drag given their large cross-sectional area. These characteristics lend themselves well to bioinspired design. Based on previous stereolithographic boxfish model experiments, it was determined that vortical flows develop around the carapace keels, producing self-correcting forces that facilitate swimming in smooth trajectories. To determine if similar self-correcting flows occur in live, actively swimming boxfishes, two species of boxfishes (Ostracion meleagris and Lactophrys triqueter) were induced to swim against currents in a water tunnel, while flows around the fishes were quantified …