Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Kinesiology

Biological Sciences Faculty Publications

2009

Squid

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Hydrodynamics Of Pulsed Jetting In Juvenile And Adult Brief Squid Lolliguncula Brevis: Evidence Of Multiple Jet 'Modes' And Their Implications For Propulsive Efficiency, Ian K. Bartol, Paul S. Krueger, William J. Stewart, Joseph T. Thompson Jun 2009

Hydrodynamics Of Pulsed Jetting In Juvenile And Adult Brief Squid Lolliguncula Brevis: Evidence Of Multiple Jet 'Modes' And Their Implications For Propulsive Efficiency, Ian K. Bartol, Paul S. Krueger, William J. Stewart, Joseph T. Thompson

Biological Sciences Faculty Publications

The dynamics of pulsed jetting in squids throughout ontogeny is not well understood, especially with regard to the development of vortex rings, which are common features of mechanically generated jet pulses (also known as starting jets). Studies of mechanically generated starting jets have revealed a limiting principle for vortex ring formation characterized in terms of a 'formation number' (F), which delineates the transition between the formation of isolated vortex rings and vortex rings that have 'pinched off' from the generating jet. Near F, there exists an optimum in pulse-averaged thrust with (potentially) low energetic cost, raising the question: do …


Pulsed Jet Dynamics Of Squid Hatchlings At Intermediate Reynolds Numbers, Ian K. Bartol, Paul S. Krueger, William J. Stewart, Joseph T. Thompson May 2009

Pulsed Jet Dynamics Of Squid Hatchlings At Intermediate Reynolds Numbers, Ian K. Bartol, Paul S. Krueger, William J. Stewart, Joseph T. Thompson

Biological Sciences Faculty Publications

Squid paralarvae (hatchlings) rely predominantly on a pulsed jet for locomotion, distinguishing them from the majority of aquatic locomotors at low/intermediate Reynolds numbers (Re), which employ oscillatory/undulatory modes of propulsion. Although squid paralarvae may delineate the lower size limit of biological jet propulsion, surprisingly little is known about the hydrodynamics and propulsive efficiency of paralarval jetting within the intermediate Re realm. To better understand paralarval jet dynamics, we used digital particle image velocimetry (DPIV) and high-speed video to measure bulk vortex properties ( e. g. circulation, impulse, kinetic energy) and other jet features [ e. g. average and …