Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Molecular Basis Of Drug Resistance Against Hepatitis C Virus Ns3/4a Protease Inhibitors, Keith Romano, Akbar Ali, Cihan Aydin, Djade Soumana, Aysegul Ozen, Laura Deveau, Casey Silver, Hong Cao, Alicia Newton, Christos Petropoulos, Wei Huang, Celia Schiffer Oct 2012

The Molecular Basis Of Drug Resistance Against Hepatitis C Virus Ns3/4a Protease Inhibitors, Keith Romano, Akbar Ali, Cihan Aydin, Djade Soumana, Aysegul Ozen, Laura Deveau, Casey Silver, Hong Cao, Alicia Newton, Christos Petropoulos, Wei Huang, Celia Schiffer

Celia A. Schiffer

Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer …


First-In-Class Small Molecule Inhibitors Of The Single-Strand Dna Cytosine Deaminase Apobec3g, Ming Li, Shivender Shandilya, Michael Carpenter, Anurag Rathore, William Brown, Angela Perkins, Daniel Harki, Jonathan Solberg, Derek Hook, Krishan Pandey, Michael Parniak, Jeffrey Johnson, Nevan Krogan, Mohan Somasundaran, Akbar Ali, Celia Schiffer, Reuben Harris Sep 2012

First-In-Class Small Molecule Inhibitors Of The Single-Strand Dna Cytosine Deaminase Apobec3g, Ming Li, Shivender Shandilya, Michael Carpenter, Anurag Rathore, William Brown, Angela Perkins, Daniel Harki, Jonathan Solberg, Derek Hook, Krishan Pandey, Michael Parniak, Jeffrey Johnson, Nevan Krogan, Mohan Somasundaran, Akbar Ali, Celia Schiffer, Reuben Harris

Celia A. Schiffer

APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions …