Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Comparative Analysis Of Microbial Sensing Molecules In Mucosal Tissues With Aging, Octavio A. Gonzalez, Sreenatha S. Kirakodu, Michael John Novak, A. J. Stromberg, L. Orraca, J. Gonzalez-Martinez, A. Burgos, Jeffrey L. Ebersole Mar 2018

Comparative Analysis Of Microbial Sensing Molecules In Mucosal Tissues With Aging, Octavio A. Gonzalez, Sreenatha S. Kirakodu, Michael John Novak, A. J. Stromberg, L. Orraca, J. Gonzalez-Martinez, A. Burgos, Jeffrey L. Ebersole

Center for Oral Health Research Faculty Publications

Host-bacterial interactions at mucosal surfaces require recognition of the bacteria by host cells enabling targeted responses to maintain tissue homeostasis. It is now well recognized that an array of host-derived pattern recognition receptors (PRRs), both cell-bound and soluble, are critical to innate immune engagement of microbes via microbial-associated molecular patterns (MAMP). This report describes the use of a nonhuman primate model to evaluate changes in the expression of these sensing molecules related to aging in healthy gingival tissues. Macaca mulatta aged 3-24 years were evaluated clinically and gingival tissues obtained, RNA isolated and microarray analysis conducted for gene expression of …


Peripheral Administration Of The Soluble Tnf Inhibitor Xpro1595 Modifies Brain Immune Cell Profiles, Decreases Beta-Amyloid Plaque Load, And Rescues Impaired Long-Term Potentiation In 5xfad Mice, Kathryn P. Macpherson, Pradoldej Sompol, George T. Kannarkat, Jianjun Chang, Lindsey Sniffen, Mary E. Wildner, Christopher M. Norris, Malú G. Tansey Jun 2017

Peripheral Administration Of The Soluble Tnf Inhibitor Xpro1595 Modifies Brain Immune Cell Profiles, Decreases Beta-Amyloid Plaque Load, And Rescues Impaired Long-Term Potentiation In 5xfad Mice, Kathryn P. Macpherson, Pradoldej Sompol, George T. Kannarkat, Jianjun Chang, Lindsey Sniffen, Mary E. Wildner, Christopher M. Norris, Malú G. Tansey

Sanders-Brown Center on Aging Faculty Publications

Clinical and animal model studies have implicated inflammation and peripheral immune cell responses in the pathophysiology of Alzheimer’s disease (AD). Peripheral immune cells including T cells circulate in the cerebrospinal fluid (CSF) of healthy adults and are found in the brains of AD patients and AD rodent models. Blocking entry of peripheral macrophages into the CNS was reported to increase amyloid burden in an AD mouse model. To assess inflammation in the 5xFAD (Tg) mouse model, we first quantified central and immune cell profiles in the deep cervical lymph nodes and spleen. In the brains of Tg mice, activated (MHCII …


Cellular Basis Of Decreased Immune Responses To Pneumococcal Vaccines In Aged Mice, Manju Garg, Wei Luo, Alan M. Kaplan, Subbarao Bondada Nov 1996

Cellular Basis Of Decreased Immune Responses To Pneumococcal Vaccines In Aged Mice, Manju Garg, Wei Luo, Alan M. Kaplan, Subbarao Bondada

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Previously, model systems were developed in our laboratory to study murine immune responses to the 23-valent pneumococcal polysaccharide vaccine Pnu-Imune, both in vivo and in vitro (M. Garg and B. Subbarao, Infect. Immun. 60:2329-2336, 1992; M. Garg, A. M. Kaplan, and S. Bondada, J. Immunol. 152: 1589-1596, 1994). Using these systems, we found that aged mice did not respond to the vaccine in vivo or in vitro. Cell separation studies showed that the unresponsiveness of the aged spleen cells to the vaccine was not due to an intrinsic B-cell defect or to T-cell-mediated immunosuppression but resulted from an accessory cell …