Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Sialic Acid Transport And Catabolism Are Cooperatively Regulated By Siar And Crp In Nontypeable Haemophilus Influenzae, Jason W. Johnston, Haider Shamsulddin, Anne-Frances Miller, Michael A. Apicella Sep 2010

Sialic Acid Transport And Catabolism Are Cooperatively Regulated By Siar And Crp In Nontypeable Haemophilus Influenzae, Jason W. Johnston, Haider Shamsulddin, Anne-Frances Miller, Michael A. Apicella

Microbiology, Immunology, and Molecular Genetics Faculty Publications

BACKGROUND: The transport and catabolism of sialic acid, a critical virulence factor for nontypeable Haemophilus influenzae, is regulated by two transcription factors, SiaR and CRP.

RESULTS: Using a mutagenesis approach, glucosamine-6-phosphate (GlcN-6P) was identified as a co-activator for SiaR. Evidence for the cooperative regulation of both the sialic acid catabolic and transport operons suggested that cooperativity between SiaR and CRP is required for regulation. cAMP was unable to influence the expression of the catabolic operon in the absence of SiaR but was able to induce catabolic operon expression when both SiaR and GlcN-6P were present. Alteration of helical phasing supported …


Bpab, A Novel Protein Encoded By The Lyme Disease Spirochete's Cp32 Prophages, Binds To Erp Operator 2 Dna, Logan H. Burns, Claire A. Adams, Sean P. Riley, Brandon L. Jutras, Amy Bowman, Alicia M. Chenail, Anne E. Cooley, Laura A. Haselhorst, Alisha M. Moore, Kelly Babb, Michael G. Fried, Brian Stevenson Sep 2010

Bpab, A Novel Protein Encoded By The Lyme Disease Spirochete's Cp32 Prophages, Binds To Erp Operator 2 Dna, Logan H. Burns, Claire A. Adams, Sean P. Riley, Brandon L. Jutras, Amy Bowman, Alicia M. Chenail, Anne E. Cooley, Laura A. Haselhorst, Alisha M. Moore, Kelly Babb, Michael G. Fried, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Borrelia burgdorferi produces Erp outer surface proteins throughout mammalian infection, but represses their synthesis during colonization of vector ticks. A DNA region 5′ of the start of erp transcription, Operator 2, was previously shown to be essential for regulation of expression. We now report identification and characterization of a novel erp Operator 2-binding protein, which we named BpaB. erp operons are located on episomal cp32 prophages, and a single bacterium may contain as many as 10 different cp32s. Each cp32 family member encodes a unique BpaB protein, yet the three tested cp32-encoded BpaB alleles all bound to the same DNA …


A Brain-Specific Cytochrome P450 Responsible For The Majority Of Deltamethrin Resistance In The Qtc279 Strain Of Tribolium Castaneum, Fang Zhu, R. Parthasarathy, Hua Bai, Katharina Woithe, Martin Kaussmann, Ralf Nauen, Douglas A. Harrison, Subba R. Palli May 2010

A Brain-Specific Cytochrome P450 Responsible For The Majority Of Deltamethrin Resistance In The Qtc279 Strain Of Tribolium Castaneum, Fang Zhu, R. Parthasarathy, Hua Bai, Katharina Woithe, Martin Kaussmann, Ralf Nauen, Douglas A. Harrison, Subba R. Palli

Entomology Faculty Publications

Cytochrome P450-mediated detoxification is one of the most important mechanisms involved in insecticide resistance. However, the molecular basis of this mechanism and the physiological functions of P450s associated with insecticide resistance remain largely unknown. Here, we exploited the functional genomics and reverse genetic approaches to identify and characterize a P450 gene responsible for the majority of deltamethrin resistance observed in the QTC279 strain of Tribolium castaneum. We used recently completed whole-genome sequence of T. castaneum to prepare custom microarrays and identified a P450 gene, CYP6BQ9, which showed more than a 200-fold higher expression in the deltamethrin-resistant QTC279 strain when compared …


The Chitobiose Transporter, Chbc, Is Required For Chitin Utilization In Borrelia Burgdorferi, David Nelson Dec 2009

The Chitobiose Transporter, Chbc, Is Required For Chitin Utilization In Borrelia Burgdorferi, David Nelson

David R. Nelson

Background: The bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. GlcNAc can be imported into the cell as a monomer or dimer (chitobiose), and the annotation for several B. burgdorferi genes suggests that this organism may be able to degrade and utilize chitin, a polymer of GlcNAc. We investigated the ability of B. burgdorferi to utilize chitin in the absence of free GlcNAc, and we attempted to identify genes involved in the process. We also examined the …