Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

Selected Works

2019

Transcriptome

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Integrated Transcriptome Analysis Reveals Mirna-Mrna Crosstalk In Laryngeal Squamous Cell Carcinoma., Yang Zhang, Yong Chen, Jinhai Yu, Guiming Liu, Zhigang Huang Sep 2019

Integrated Transcriptome Analysis Reveals Mirna-Mrna Crosstalk In Laryngeal Squamous Cell Carcinoma., Yang Zhang, Yong Chen, Jinhai Yu, Guiming Liu, Zhigang Huang

Yong Chen

Next generation sequencing (NGS) has proven to be a powerful tool in delineating myriads of molecular subtypes of cancer, as well as in revealing accumulation of genomic mutations throughout cancer progression. Whole genome microRNA (miRNA) and mRNA expression profiles were obtained from patients with laryngeal squamous cell carcinoma (LSCC) using deep sequencing technology, and were analyzed by utilizing integrative computational approaches. A large number of protein-coding and non-coding genes were detected to be differentially expressed, indicating a functional switch in LSCC cells. A total of 127 mutated genes were detected to be significantly associated with ectoderm and epidermis development. Eleven …


Integrated Transcriptomic Analysis Of Trichosporon Asahii Uncovers The Core Genes And Pathways Of Fluconazole Resistance., Haitao Li, Congmin Wang, Yong Chen, Shaoqiang Zhang, Rongya Yang Sep 2019

Integrated Transcriptomic Analysis Of Trichosporon Asahii Uncovers The Core Genes And Pathways Of Fluconazole Resistance., Haitao Li, Congmin Wang, Yong Chen, Shaoqiang Zhang, Rongya Yang

Yong Chen

Trichosporon asahii (T. asahii) has emerged as a dangerous pathogen that causes rare but life-threatening infections. Its resistance to certain antifungal agents makes it difficult to treat, especially for patients undergoing long-term antibiotic therapy. In this study, we performed a series of fluconazole (FLC) perturbation experiments for two T. asahii strains, a clinical isolate stain CBS 2479 (T2) and an environmental isolate strain CBS 8904 (T8), to uncover potential genes and pathways involved in FLC resistance. We achieved 10 transcriptomes of T2 and T8 that were based on dose and time series of FLC perturbations. Systematic comparisons of the transcriptomes …


Extensive Tissue-Specific Transcriptomic Plasticity In Maize Primary Roots Upon Water Deficit, Nina Opitz, Caroline Marcon, Anja Paschold, Waqas Ahmed Malik, Andrew Lithio, Ronny Brandt, Hans-Peter Piepho, Dan Nettleton, Frank Hochholdinger Jun 2019

Extensive Tissue-Specific Transcriptomic Plasticity In Maize Primary Roots Upon Water Deficit, Nina Opitz, Caroline Marcon, Anja Paschold, Waqas Ahmed Malik, Andrew Lithio, Ronny Brandt, Hans-Peter Piepho, Dan Nettleton, Frank Hochholdinger

Dan Nettleton

Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the …


Transcriptomic And Anatomical Complexity Of Primary, Seminal, And Crown Roots Highlight Root Type-Specific Functional Diversity In Maize (Zea Mays L.), Huanhuan Tai, Xin Lu, Nin Opitz, Caroline Marcon, Anja Paschold, Andrew Lithio, Dan Nettleton, Frank Hochholdinger Jun 2019

Transcriptomic And Anatomical Complexity Of Primary, Seminal, And Crown Roots Highlight Root Type-Specific Functional Diversity In Maize (Zea Mays L.), Huanhuan Tai, Xin Lu, Nin Opitz, Caroline Marcon, Anja Paschold, Andrew Lithio, Dan Nettleton, Frank Hochholdinger

Dan Nettleton

Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across …


Non-Syntenic Genes Drive Rtcs-Dependent Regulation Of The Embryo Transcriptome During Formation Of Seminal Root Primordia In Maize (Zea Mays L.), Huanhuan Tai, Nina Opitz, Andrew Lithio, Xin Lu, Dan Nettleton, Frank Hochholdinger Jun 2019

Non-Syntenic Genes Drive Rtcs-Dependent Regulation Of The Embryo Transcriptome During Formation Of Seminal Root Primordia In Maize (Zea Mays L.), Huanhuan Tai, Nina Opitz, Andrew Lithio, Xin Lu, Dan Nettleton, Frank Hochholdinger

Dan Nettleton

Seminal roots of maize are pivotal for early seedling establishment. The maize mutant rootless concerning crown and seminal roots (rtcs) is defective in seminal root initiation during embryogenesis. In this study, the transcriptomes of wild-type and rtcs embryos were analyzed by RNA-Seq based on histological results at three stages of seminal root primordia formation. Hierarchical clustering highlighted that samples of each genotype grouped together along development. Determination of their gene activity status revealed hundreds of genes specifically transcribed in wild-type or rtcs embryos, while K-mean clustering revealed changes in gene expression dynamics between wild-type and rtcs during embryo …


Intro To Rna-Sequencing Lecture Slides, Ray A. Enke Dec 2018

Intro To Rna-Sequencing Lecture Slides, Ray A. Enke

Ray Enke Ph.D.

Introductory lecture slides on eukaryotic RNA-sequencing analysis