Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

Selected Works

2019

Blumeria graminis

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Interchromosomal Transfer Of Immune Regulation During Infection Of Barley With The Powdery Mildew Pathogen, Priyanka Surana, Ruo Xu, Gregory Fuerst, Antony V. E. Chapman, Dan Nettleton, Roger P. Wise Jun 2019

Interchromosomal Transfer Of Immune Regulation During Infection Of Barley With The Powdery Mildew Pathogen, Priyanka Surana, Ruo Xu, Gregory Fuerst, Antony V. E. Chapman, Dan Nettleton, Roger P. Wise

Dan Nettleton

Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causes powdery mildew disease in barley (Hordeum vulgare L.). Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL) analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near …


Flor Revisited (Again): Eqtl And Mutational Analysis Of Nb-Lrr Mediated Immunity To Powdery Mildew In Barley, Roger P. Wise, Priyanka Surana, Gregory S. Fuerst, Ruo Xu, Divya Mistry, Julie A. Dickerson, Dan Nettleton Dr. Jun 2019

Flor Revisited (Again): Eqtl And Mutational Analysis Of Nb-Lrr Mediated Immunity To Powdery Mildew In Barley, Roger P. Wise, Priyanka Surana, Gregory S. Fuerst, Ruo Xu, Divya Mistry, Julie A. Dickerson, Dan Nettleton Dr.

Dan Nettleton

Genes encoding early signaling events in pathogen defense often are identified only by their phenotype. Such genes involved in barley-powdery mildew interactions include Mla, specifying race-specific resistance; Rar1 (Required for Mla12-specified resistance1), and Rom1 (Restoration of Mla-specified resistance1). The HSP90-SGT1-RAR1 complex appears to function as chaperone in MLA-specified resistance, however, much remains to be discovered regarding the precise signaling underlying plant immunity. Genetic analyses of fast-neutron mutants derived from CI 16151 (Mla6) uncovered a novel locus, designated Rar3 (Required for Mla6-specified resistance3). Rar3 segregates independent of Mla6 and Rar1, and rar3 mutants are susceptible to Blumeria graminis f. sp. hordei …