Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

Undergraduate Research Opportunities Program (UROP)

Conference

Mutagenesis

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Stationary Phase Mutagenesis In Bacillus Subtilis: The Interaction Between Transcription And Error-Prone Replication In Conditions Of Stress, Mary Girard, Eduardo Robleto Aug 2009

Stationary Phase Mutagenesis In Bacillus Subtilis: The Interaction Between Transcription And Error-Prone Replication In Conditions Of Stress, Mary Girard, Eduardo Robleto

Undergraduate Research Opportunities Program (UROP)

While under conditions of stress, non-dividing cells may acquire beneficial mutations. This is referred to as stationary phase mutagenesis, or adaptive mutagenesis. Previous research has shown that actively transcribed genes and those under selective pressure are prone to mutations that confer escape from non-dividing conditions. Accordingly, strains lacking transcription factors have shown a drastically lower number of mutations that confer escape while under amino acid starvation than those observed in the wildtype background. Also, error-prone DNA polymerases are known to be active in cells under stress and it has been shown that strains lacking an error-prone DNA polymerase display reduced …


The Role Of Rpoe In Stationary Phase Mutagenesis In Bacillus, Turquoise C. Alexander, Eduardo A. Robleto Aug 2009

The Role Of Rpoe In Stationary Phase Mutagenesis In Bacillus, Turquoise C. Alexander, Eduardo A. Robleto

Undergraduate Research Opportunities Program (UROP)

Stationary phase mutagenesis is a phenomenon whereby random mutations are generated in non-dividing cells. In order to understand how these mutations arise, we use Bacillus subtilis, a gram positive rod-shaped model organism. It is hypothesize that increased transcription promotes stationary phase mutagenesis in this organism. We therefore examined the role of rpoE, a gene that encodes RNA polymerase ! subunit and proposed to influence efficiency of transcription. To this end, we will first generate a strain bearing a deletion in the rpoE gene. In order to determine if this gene is important for mutagenesis, we will examine the accumulation of …


Dna Secondary Structures And Their Contribution To Mutagenesis In B. Subtilis Stationary Phase Cells, Carmen Vallin, Katherine Ona, Chris Ross, Ronald E. Yasbin, Eduardo A. Robleto Aug 2009

Dna Secondary Structures And Their Contribution To Mutagenesis In B. Subtilis Stationary Phase Cells, Carmen Vallin, Katherine Ona, Chris Ross, Ronald E. Yasbin, Eduardo A. Robleto

Undergraduate Research Opportunities Program (UROP)

It is widely known and accepted that the cause of many mutations in cells are generated during the replication process of actively dividing cells, however more recent research has shown that mutations also arise in non growing conditions, a phenomenon known stationary phase mutagenesis. Much of what is known come from studies in eukaryotic and bacterial models. It is proposed that in nongrowing cells, the process of transcription plays an important role in mutagenesis. I will test the hypothesis that secondary structures formed of DNA generated transcription promote mutagenesis. The sequences transcriptiongenerated structures are speculated to be prone to mutations …


The Regulation Of The Icsp Promoter Of Shigella Flexneri By The Virulence Factor Virb, Maria Castellanos, Dustin Harrison, Helen Wing Aug 2008

The Regulation Of The Icsp Promoter Of Shigella Flexneri By The Virulence Factor Virb, Maria Castellanos, Dustin Harrison, Helen Wing

Undergraduate Research Opportunities Program (UROP)

Shigella flexneri is a pathogenic bacterium that causes severe dysentery in humans commonly known as shigellosis. Shigella encodes an outer membrane protease called IcsP. The regulation of icsP expression is under direct control of a transcriptional factor called VirB, which controls the expression of many virulence genes in Shigella. Previous work has shown through deletion analysis of the icsP promoter region that sequences as far as 1368 base pairs upstream of the transcription starting site are important for the regulation of the icsP gene by VirB. However, it is still unclear whether VirB activation requires sequences within the icsP promoter …


Construction Of A Thif Genetic Disruption In Bacillus Subtilis, Kathleen Bradley, Christine Pybus, Ronald Yasbin, Eduardo Robleto Aug 2008

Construction Of A Thif Genetic Disruption In Bacillus Subtilis, Kathleen Bradley, Christine Pybus, Ronald Yasbin, Eduardo Robleto

Undergraduate Research Opportunities Program (UROP)

The goal of our research is to determine whether the level of transcription of a gene is correlated with the level of mutation in that gene. One factor involved in the mutability of a transcribed gene is the ability of the single stranded DNA to form secondary stem loop structures (SLS), in the wake of the transcription bubble, that contain unpaired mutable bases. We are interested in correlating the levels of mutation with transcription in the thiF gene, which is predicted by bioinformatic analysis to be highly mutable. To achieve this goal, Kathleen will first construct a non-polar thiF genetic …


Constructing An Argf- Strain Of Bacillus Subtilis, Allison Faucher, Christine Pybus, Ronald E. Yasbin, Eduardo A. Robleto Aug 2008

Constructing An Argf- Strain Of Bacillus Subtilis, Allison Faucher, Christine Pybus, Ronald E. Yasbin, Eduardo A. Robleto

Undergraduate Research Opportunities Program (UROP)

The goal of our research is to determine whether the level of transcription of a gene is correlated with the level of mutation in that gene. One factor involved in the mutability of a transcribed gene is the ability of the single stranded DNA to form secondary stem loop structures (SLS), in the wake of the transcription bubble, that contain unpaired mutable bases. We are interested in correlating the levels of mutation with transcription in the argF gene, which is predicted by bioinformatic analysis to be highly mutable. To achieve this goal, Allison will first construct a non-polar argF genetic …