Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski Mar 2010

Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski

Bioelectrics Publications

The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take full advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is a strong candidate to meet this delivery criterion. Electroporation of the skin is a simple, direct, in vivo method to deliver genes for therapy. Previously, delivery to the skin was performed by means of applicators with relatively large distances between electrodes, resulting in significant muscle stimulation and pain. These applicators also had limitations in controlling the directionality of the applied field. …


Plasmid Injection And Application Of Electric Pulses Alter Endogenous Mrna And Protein Expression In B16.F10 Mouse Melanomas, L. C. Heller, Y. L. Cruz, B. Ferraro, H. Yang, R. Heller Jan 2010

Plasmid Injection And Application Of Electric Pulses Alter Endogenous Mrna And Protein Expression In B16.F10 Mouse Melanomas, L. C. Heller, Y. L. Cruz, B. Ferraro, H. Yang, R. Heller

Bioelectrics Publications

The application of electric pulses to tissues causes cell membrane destabilization, allowing exogenous molecules to enter the cells. This delivery technique can be used for plasmid gene therapy. Reporter gene expression after plasmid delivery with eight representative published protocols was compared in B16.F10 mouse melanoma tumors. This expression varied significantly based on the pulse parameters utilized for delivery. To observe the possible influence of plasmid injection and/or pulse application on endogenous gene expression, levels of stress-related mRNAs 4 and 24 h after delivery were determined by PCR array. Increases in mRNA levels for several inflammatory chemokines and cytokines were observed …


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly …


Increased Perfusion And Angiogenesis In A Hindlimb Ischemia Model With Plasmid Fgf-2 Delivered By Noninvasive Electroporation, B. Ferraro, Y. L. Cruz, M. Baldwin, D. Coppola, R. Heller Jan 2010

Increased Perfusion And Angiogenesis In A Hindlimb Ischemia Model With Plasmid Fgf-2 Delivered By Noninvasive Electroporation, B. Ferraro, Y. L. Cruz, M. Baldwin, D. Coppola, R. Heller

Bioelectrics Publications

Gene therapy approaches delivering fibroblast growth factor-2 (FGF-2) have shown promise as a potential treatment for increasing blood flow to ischemic limbs. Currently, effective noninvasive techniques to deliver plasmids encoding genes of therapeutic interest, such as FGF-2, are limited. We sought to determine if intradermal injection of plasmid DNA encoding FGF-2 (pFGF) followed by noninvasive cutaneous electroporation (pFGFE+) could increase blood flow and angiogenesis in a rat model of hindlimb ischemia. pFGFE+ or control treatments were administered on postoperative day 0. Compared to injection of pFGF alone (pFGFE-), delivery of pFGFE+ significantly increased FGF-2 expression for 10 days. Further, the …