Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

SelectedWorks

Genomics

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Functional Car Models For Spatially Correlated Functional Datasets, Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan Czerniak, Jeffrey S. Morris Jan 2016

Functional Car Models For Spatially Correlated Functional Datasets, Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan Czerniak, Jeffrey S. Morris

Jeffrey S. Morris

We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on …


Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull Jan 2015

Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull

Jeffrey S. Morris

Current methods for conducting expression Quantitative Trait Loci (eQTL) analysis are limited in scope to a pairwise association testing between a single nucleotide polymorphism (SNPs) and expression probe set in a region around a gene of interest, thus ignoring the inherent between-SNP correlation. To determine association, p-values are then typically adjusted using Plug-in False Discovery Rate. As many SNPs are interrogated in the region and multiple probe-sets taken, the current approach requires the fitting of a large number of models. We propose to remedy this by introducing a flexible function-on-scalar regression that models the genome as a functional outcome. The …


Open Consent, Biobanking And Data Protection Law: Can Open Consent Be ‘Informed’ Under The Forthcoming Data Protection Regulation?, Dara Hallinan, Michael Friedewald Jan 2015

Open Consent, Biobanking And Data Protection Law: Can Open Consent Be ‘Informed’ Under The Forthcoming Data Protection Regulation?, Dara Hallinan, Michael Friedewald

Michael Friedewald

This article focuses on whether a certain form of consent used by biobanks – open consent – is compatible with the Proposed Data Protection Regulation. In an open consent procedure, the biobank requests consent once from the data subject for all future research uses of genetic material and data. However, as biobanks process personal data, they must comply with data protection law. Data protection law is currently undergoing reform. The Proposed Data Protection Regulation is the culmination of this reform and, if voted into law, will constitute a new legal framework for biobanking. The Regulation puts strict conditions on consent …


Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do Jan 2012

Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do

Jeffrey S. Morris

Motivation: Analyzing data from multi-platform genomics experiments combined with patients’ clinical outcomes helps us understand the complex biological processes that characterize a disease, as well as how these processes relate to the development of the disease. Current integration approaches that treat the data are limited in that they do not consider the fundamental biological relationships that exist among the data from platforms.

Statistical Model: We propose an integrative Bayesian analysis of genomics data (iBAG) framework for identifying important genes/biomarkers that are associated with clinical outcome. This framework uses a hierarchical modeling technique to combine the data obtained from multiple platforms …


Members’ Discoveries: Fatal Flaws In Cancer Research, Jeffrey S. Morris Jan 2010

Members’ Discoveries: Fatal Flaws In Cancer Research, Jeffrey S. Morris

Jeffrey S. Morris

A recent article published in The Annals of Applied Statistics (AOAS) by two MD Anderson researchers—Keith Baggerly and Kevin Coombes—dissects results from a highly-influential series of medical papers involving genomics-driven personalized cancer therapy, and outlines a series of simple yet fatal flaws that raises serious questions about the veracity of the original results. Having immediate and strong impact, this paper, along with related work, is providing the impetus for new standards of reproducibility in scientific research.


Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes Jan 2010

Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes

Jeffrey S. Morris

Proteomic profiling has the potential to impact the diagnosis, prognosis, and treatment of various diseases. A number of different proteomic technologies are available that allow us to look at many proteins at once, and all of them yield complex data that raise significant quantitative challenges. Inadequate attention to these quantitative issues can prevent these studies from achieving their desired goals, and can even lead to invalid results. In this chapter, we describe various ways the involvement of statisticians or other quantitative scientists in the study team can contribute to the success of proteomic research, and we outline some of the …


Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris Jan 2010

Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris

Jeffrey S. Morris

Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence ratios as a function of the genomic DNA location and provides a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimation of the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number aberrations. …


Detecting Outlier Genes From High-Dimensional Data: A Fuzzy Approach, Debashis Ghosh Jan 2010

Detecting Outlier Genes From High-Dimensional Data: A Fuzzy Approach, Debashis Ghosh

Debashis Ghosh

A recent nding in cancer research has been the characterization of previously undis- covered chromosomal abnormalities in several types of solid tumors. This was found based on analyses of high-throughput data from gene expression microarrays and motivated the development of so-called `outlier' tests for dierential expression. One statistical issue was the potential discreteness of the test statistics. Using ideas from fuzzy set theory, we develop fuzzy outlier detection algorithms that have links to ideas in multiple comparisons. Two- and K-sample extensions are considered. The methodology is illustrated by application to two microarray studies.


Data Sharing, Latency Variables And The Science Commons, Jorge L. Contreras Jan 2010

Data Sharing, Latency Variables And The Science Commons, Jorge L. Contreras

Jorge L Contreras

Over the past decade, the rapidly decreasing cost of computer storage and the increasing prevalence of high-speed Internet connections have fundamentally altered the way in which scientific research is conducted. Led by scientists in disciplines such as genomics, the rapid sharing of data sets and cross-institutional collaboration promise to increase scientific efficiency and output dramatically. As a result, an increasing number of public “commons” of scientific data are being created: aggregations intended to be used and accessed by researchers worldwide. Yet, the sharing of scientific data presents legal, ethical and practical challenges that must be overcome before such science commons …