Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

Old Dominion University

Computer Science Faculty Publications

Deep learning

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

An Approach To Developing Benchmark Datasets For Protein Secondary Structure Segmentation From Cryo-Em Density Maps, Thu Nguyen, Yongcheng Mu, Jiangwen Sun, Jing He Jan 2023

An Approach To Developing Benchmark Datasets For Protein Secondary Structure Segmentation From Cryo-Em Density Maps, Thu Nguyen, Yongcheng Mu, Jiangwen Sun, Jing He

Computer Science Faculty Publications

More and more deep learning approaches have been proposed to segment secondary structures from cryo-electron density maps at medium resolution range (5--10Å). Although the deep learning approaches show great potential, only a few small experimental data sets have been used to test the approaches. There is limited understanding about potential factors, in data, that affect the performance of segmentation. We propose an approach to generate data sets with desired specifications in three potential factors - the protein sequence identity, structural contents, and data quality. The approach was implemented and has generated a test set and various training sets to study …


Deepep: A Deep Learning Framework For Identifying Essential Proteins, Min Zeng, Min Li, Fang-Xiang Wu, Yaohang Li, Yi Pan Dec 2019

Deepep: A Deep Learning Framework For Identifying Essential Proteins, Min Zeng, Min Li, Fang-Xiang Wu, Yaohang Li, Yi Pan

Computer Science Faculty Publications

Background: Essential proteins are crucial for cellular life and thus, identification of essential proteins is an important topic and a challenging problem for researchers. Recently lots of computational approaches have been proposed to handle this problem. However, traditional centrality methods cannot fully represent the topological features of biological networks. In addition, identifying essential proteins is an imbalanced learning problem; but few current shallow machine learning-based methods are designed to handle the imbalanced characteristics. Results: We develop DeepEP based on a deep learning framework that uses the node2vec technique, multi-scale convolutional neural networks and a sampling technique to identify essential proteins. …