Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

Old Dominion University

Computer Science Faculty Publications

Cryo-electron microscopy

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

An Investigation Of Atomic Structures Derived From X-Ray Crystallography And Cryo-Electron Microscopy Using Distal Blocks Of Side-Chains, Lin Chen, Jing He, Salim Sazzed, Rayshawn Walker Jan 2018

An Investigation Of Atomic Structures Derived From X-Ray Crystallography And Cryo-Electron Microscopy Using Distal Blocks Of Side-Chains, Lin Chen, Jing He, Salim Sazzed, Rayshawn Walker

Computer Science Faculty Publications

Cryo-electron microscopy (cryo-EM) is a structure determination method for large molecular complexes. As more and more atomic structures are determined using this technique, it is becoming possible to perform statistical characterization of side-chain conformations. Two data sets were involved to characterize block lengths for each of the 18 types of amino acids. One set contains 9131 structures resolved using X-ray crystallography from density maps with better than or equal to 1.5 Å resolutions, and the other contains 237 protein structures derived from cryo-EM density maps with 2-4 Å resolutions. The results show that the normalized probability density function of block …


Comparing An Atomic Model Or Structure To A Corresponding Cryo-Electron Microscopy Image At The Central Axis Of A Helix, Stephanie Zeil, Julio Kovacs, Willy Wriggers, Jing He Jan 2017

Comparing An Atomic Model Or Structure To A Corresponding Cryo-Electron Microscopy Image At The Central Axis Of A Helix, Stephanie Zeil, Julio Kovacs, Willy Wriggers, Jing He

Computer Science Faculty Publications

Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM …