Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Arthropod Transcriptional Activator Protein-1 (Ap-1) Aids Tick-Rickettsial Pathogen Survival In The Cold, Supreet Khanal, Vikas Taank, John F. Anderson, Hameeda Sultana, Girish Neelakanta Jul 2018

Arthropod Transcriptional Activator Protein-1 (Ap-1) Aids Tick-Rickettsial Pathogen Survival In The Cold, Supreet Khanal, Vikas Taank, John F. Anderson, Hameeda Sultana, Girish Neelakanta

Biological Sciences Faculty Publications

Ixodes scapularis ticks transmit several pathogens to humans including rickettsial bacterium, Anaplasma phagocytophilum. Here, we report that A. phagocytophilum uses tick transcriptional activator protein-1 (AP-1) as a molecular switch in the regulation of arthropod antifreeze gene, iafgp. RNAi-mediated silencing of ap-1 expression significantly affected iafgp gene expression and A. phagocytophilum burden in ticks upon acquisition from the murine host. Gel shift assays provide evidence that both the bacterium and AP-1 influences iafgp promoter and expression. The luciferase assays revealed that a region of approximately 700 bp upstream of the antifreeze gene is sufficient for AP-1 binding to promote …


Gain-Of-Function Experiments With Bacteriophage Lambda Uncover Residues Under Diversifying Selection In Nature, Rohan Maddamsetti, Daniel T. Johnson, Stephanie J. Spielman, Katherine L. Petrie, Debora S. Marks, Justin R. Meyer Jan 2018

Gain-Of-Function Experiments With Bacteriophage Lambda Uncover Residues Under Diversifying Selection In Nature, Rohan Maddamsetti, Daniel T. Johnson, Stephanie J. Spielman, Katherine L. Petrie, Debora S. Marks, Justin R. Meyer

Biological Sciences Faculty Publications

Viral gain-of-function mutations frequently evolve during laboratory experiments. Whether the specific mutations that evolve in the lab also evolve in nature and whether they have the same impact on evolution in the real world is unknown. We studied a model virus, bacteriophage λ, that repeatedly evolves to exploit a new host receptor under typical laboratory conditions. Here, we demonstrate that two residues of λ’s J protein are required for the new function. In natural λ variants, these amino acid sites are highly diverse and evolve at high rates. Insertions and deletions at these locations are associated with phylogenetic patterns indicative …