Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

PDF

Dartmouth College

Pharmacology

Articles 1 - 13 of 13

Full-Text Articles in Life Sciences

Yeast Integral Membrane Proteins Apq12, Brl1, And Brr6 Form A Complex Important For Regulation Of Membrane Homeostasis And Nuclear Pore Complex Biogenesis, Museer A. Lone, Aaron E. Atkinson, Christine A. Hodge, Stéphanie Cottier, Fernando Martínez-Montañés, Shelley Maithel, Laurent Mène-Saffrané, Cole Cole, Roger Schneiter Oct 2015

Yeast Integral Membrane Proteins Apq12, Brl1, And Brr6 Form A Complex Important For Regulation Of Membrane Homeostasis And Nuclear Pore Complex Biogenesis, Museer A. Lone, Aaron E. Atkinson, Christine A. Hodge, Stéphanie Cottier, Fernando Martínez-Montañés, Shelley Maithel, Laurent Mène-Saffrané, Cole Cole, Roger Schneiter

Dartmouth Scholarship

Proper functioning of intracellular membranes is critical for many cellular processes. A key feature of membranes is their ability to adapt to changes in environmental conditions by adjusting their composition so as to maintain constant biophysical proper- ties, including fluidity and flexibility. Similar changes in the biophysical properties of membranes likely occur when intracellular processes, such as vesicle formation and fusion, require dramatic changes in membrane curvature. Similar modifications must also be made when nuclear pore complexes (NPCs) are constructed within the existing nuclear membrane, as occurs during in- terphase in all eukaryotes. Here we report on the role of …


Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold Feb 2014

Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold

Dartmouth Scholarship

Lysostaphin represents a promising therapeutic agent for the treatment of staphylococcal infections, in particular those of methicillin-resistant Staphylococcus aureus (MRSA). However, conventional expression systems for the enzyme suffer from various limitations, and there remains a need for an efficient and cost-effective production process to facilitate clinical translation and the development of nonmedical applications. While Pichia pastoris is widely used for high-level production of recombinant proteins, there are two major barriers to the production of lysostaphin in this industrially relevant host: lack of expression from the wild-type lysostaphin gene and aberrant glycosylation of the wild-type protein sequence. The first barrier can …


Farnesol And Cyclic Amp Signaling Effects On The Hypha-To-Yeast Transition In Candida Albicans, Allia K. Lindsay, Aurélie Deveau, Amy E. Piispanen, Deborah A. Hogan Aug 2012

Farnesol And Cyclic Amp Signaling Effects On The Hypha-To-Yeast Transition In Candida Albicans, Allia K. Lindsay, Aurélie Deveau, Amy E. Piispanen, Deborah A. Hogan

Dartmouth Scholarship

Candida albicans, a fungal pathogen of humans, regulates its morphology in response to many environmental cues and this morphological plasticity contributes to virulence. Farnesol, an autoregulatory molecule produced by C. albicans, inhibits the induction of hyphal growth by inhibiting adenylate cyclase (Cyr1). The role of farnesol and Cyr1 in controlling the maintenance of hyphal growth has been less clear. Here, we demonstrate that preformed hyphae transition to growth as yeast in response to farnesol and that strains with increased cyclic AMP (cAMP) signaling exhibit more resistance to farnesol. Exogenous farnesol did not induce the hypha-to-yeast transition in mutants …


Roles Of Ras1 Membrane Localization During Candida Albicans Hyphal Growth And Farnesol Response, Amy E. Piispanen, Ophelie Bonnefoi, Sarah Carden, Aurelie Deveau Sep 2011

Roles Of Ras1 Membrane Localization During Candida Albicans Hyphal Growth And Farnesol Response, Amy E. Piispanen, Ophelie Bonnefoi, Sarah Carden, Aurelie Deveau

Dartmouth Scholarship

Many Ras GTPases localize to membranes via C-terminal farnesylation and palmitoylation, and localization regulates function. In Candida albicans, a fungal pathogen of humans, Ras1 links environmental cues to morphogenesis. Here, we report the localization and membrane dynamics of Ras1, and we characterize the roles of conserved C-terminal cysteine residues, C287 and C288, which are predicted sites of palmitoylation and farnesylation, respectively. GFP-Ras1 is localized uniformly to plasma membranes in both yeast and hyphae, yet Ras1 plasma membrane mobility was reduced in hyphae compared to that in yeast. Ras1-C288S was mislocalized to the cytoplasm and could not support hyphal development. …


Farnesol Induces Hydrogen Peroxide Resistance In Candida Albicans Yeast By Inhibiting The Ras-Cyclic Amp Signaling Pathway, Aurélie Deveau, Amy E. Piispanen, Angelyca A. Jackson, Deborah A. Hogan Jan 2010

Farnesol Induces Hydrogen Peroxide Resistance In Candida Albicans Yeast By Inhibiting The Ras-Cyclic Amp Signaling Pathway, Aurélie Deveau, Amy E. Piispanen, Angelyca A. Jackson, Deborah A. Hogan

Dartmouth Scholarship

Farnesol, a Candida albicans cell-cell signaling molecule that participates in the control of morphology, has an additional role in protection of the fungus against oxidative stress. In this report, we show that although farnesol induces the accumulation of intracellular reactive oxygen species (ROS), ROS generation is not necessary for the induction of catalase (Cat1)-mediated oxidative-stress resistance. Two antioxidants, α-tocopherol and, to a lesser extent, ascorbic acid effectively reduced intracellular ROS generation by farnesol but did not alter farnesol-induced oxidative-stress resistance. Farnesol inhibits the Ras1-adenylate cyclase (Cyr1) signaling pathway to achieve its effects on morphology under hypha-inducing conditions, and we demonstrate …


Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy May 2009

Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy

Dartmouth Scholarship

Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle …


Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


Variation In Molybdenum Content Across Broadly Distributed Populations Of Arabidopsis Thaliana Is Controlled By A Mitochondrial Molybdenum Transporter (Mot1), Ivan Baxter, Balasubramaniam Muthukumar, Hyeong Cheol Park, Peter Buchner, Brett Lahner, John Danku, Keyan Zhao, Joohyun Lee, Malcolm J. Hawkesford, Mary Lou Guerinot, David E. Salt Feb 2008

Variation In Molybdenum Content Across Broadly Distributed Populations Of Arabidopsis Thaliana Is Controlled By A Mitochondrial Molybdenum Transporter (Mot1), Ivan Baxter, Balasubramaniam Muthukumar, Hyeong Cheol Park, Peter Buchner, Brett Lahner, John Danku, Keyan Zhao, Joohyun Lee, Malcolm J. Hawkesford, Mary Lou Guerinot, David E. Salt

Dartmouth Scholarship

Molybdenum (Mo) is an essential micronutrient for plants, serving as a cofactor for enzymes involved in nitrate assimilation, sulfite detoxification, abscisic acid biosynthesis, and purine degradation. Here we show that natural variation in shoot Mo content across 92 Arabidopsis thaliana accessions is controlled by variation in a mitochondrially localized transporter (Molybdenum Transporter 1 - MOT1) that belongs to the sulfate transporter superfamily. A deletion in the MOT1 promoter is strongly associated with low shoot Mo, occurring in seven of the accessions with the lowest shoot content of Mo. Consistent with the low Mo phenotype, MOT1 expression in low Mo accessions …


Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom Oct 2007

Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom

Dartmouth Scholarship

Changes in gene expression during reversible bud-hypha transitions of the opportunistic fungal pathogen Candida albicans permit adaptation to environmental conditions that are critical for proliferation in host tissues. Our previous work has shown that the hypha-specific adhesin gene HWP1 is up-regulated by the cyclic AMP (cAMP) signaling pathway. However, little is known about the potential influences of determinants of cell morphology on HWP1 gene expression. We found that blocking hypha formation with cytochalasin A, which destabilizes actin filaments, and with latrunculin A, which sequesters actin monomers, led to a loss of HWP1 gene expression. In contrast, high levels of HWP1 …


A Subset Of Arabidopsis Ap2 Transcription Factors Mediates Cytokinin Responses In Concert With A Two-Component Pathway, Aaron M. Rashotte, Michael G. Mason, Claire E. Hutchison, Fernando J. Ferreira, G. Eric Schaller, Joseph J. Kieber Jul 2006

A Subset Of Arabidopsis Ap2 Transcription Factors Mediates Cytokinin Responses In Concert With A Two-Component Pathway, Aaron M. Rashotte, Michael G. Mason, Claire E. Hutchison, Fernando J. Ferreira, G. Eric Schaller, Joseph J. Kieber

Dartmouth Scholarship

The plant hormone cytokinin regulates numerous growth and developmental processes. A signal transduction pathway for cytokinin has been elucidated that is similar to bacterial two-component phosphorelays. In Arabidopsis, this pathway is comprised of receptors that are similar to sensor histidine kinases, histidine-containing phosphotransfer proteins, and response regulators (ARRs). There are two classes of response regulators, the type-A ARRs, which act as negative regulators of cytokinin responses, and the type-B ARRs, which are transcription factors that play a positive role in mediating cytokinin-regulated gene expression. Here we show that several closely related members of the Arabidopsis AP2 gene family of …


A Thyroid Hormone-Regulated Gene In Xenopus Laevis Encodes A Type Iii Iodothyronine 5-Deiodinase., Donald L. St Germain, Robert Schwartzman, Walburga Croteau, Akira Kanamori, Zhou Wang, Donald D. Brown, Valerie Galton Aug 1994

A Thyroid Hormone-Regulated Gene In Xenopus Laevis Encodes A Type Iii Iodothyronine 5-Deiodinase., Donald L. St Germain, Robert Schwartzman, Walburga Croteau, Akira Kanamori, Zhou Wang, Donald D. Brown, Valerie Galton

Dartmouth Scholarship

The type III iodothyronine 5-deiodinase metabolizes thyroxine and 3,5,3'-triiodothyronine to inactive metabolites by catalyzing the removal of iodine from the inner ring. The enzyme is expressed in a tissue-specific pattern during particular stages of development in amphibia, birds, and mammals. Recently, a PCR-based subtractive hybridization technique has been used to isolate cDNAs prepared from Xenopus laevis tadpole tail mRNA that represent genes upregulated by thyroid hormone during metamorphosis. Sequence analysis of one of these cDNAs (XL-15) revealed regions of homology to the mRNA encoding the rat type I (outer ring) 5'-deiodinase, including a conserved UGA codon that encodes selenocysteine in …


Cole1 Copy Number Mutants., Londa Schmidt, Joseph Inselburg Aug 1982

Cole1 Copy Number Mutants., Londa Schmidt, Joseph Inselburg

Dartmouth Scholarship

A deletion mutant of the colicin E1-derived plasmid, pDMS6642, exhibited an approximately fourfold increase in copy number. We subsequently isolated hydroxylamine-induced mutants of that plasmid that had a further increase in copy number. Analysis of them suggests that the increased copy number of pDMS6642 is associated with transcriptional readthrough from a Tn3 transposon into the region of ColE1 containing information that influences plasmid replication. The hydroxylamine mutation in one copy number mutant appeared to increase the plasmid copy number by stimulating readthrough transcription from the Tn3 transposon into the ColE1 replication control region, whereas the other hydroxylamine mutation acts by …


Synthesis Of Low Molecular Weight Heat Shock Peptides Stimulated By Ecdysterone In A Cultured Drosophila Cell Line., Robert C. Ireland, Edward M. Berger Feb 1982

Synthesis Of Low Molecular Weight Heat Shock Peptides Stimulated By Ecdysterone In A Cultured Drosophila Cell Line., Robert C. Ireland, Edward M. Berger

Dartmouth Scholarship

Treatment of Schneider's line 3 Drosophila cells with the steroid hormone ecdysterone rapidly stimulated the synthesis and accumulation of the polypeptide previously designated p7 [Berger, E. M., Ireland, R. C. & Wyss, C. (1980) Somatic Cell Genet. 6, 119-129]. In this report, p7 is identified as the 23,000-dalton heat shock polypeptide (hsp23). In addition to hsp23, the synthesis of the low molecular weight heat shock polypeptides hsp22, hsp26, and hsp27 was also stimulated by ecdysterone, although to different extents. Hybridization of a nick-translated genomic clone containing the hsp23 gene to a total RNA blot showed that ecdysterone stimulation of hsp23 …