Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Sleep Modifications In A Drosophila Melanogaster Model Of Fragile X Syndrome, Morgan Mclaughlin May 2020

Sleep Modifications In A Drosophila Melanogaster Model Of Fragile X Syndrome, Morgan Mclaughlin

Undergraduate Honors Theses

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disabilities, disruptions in sleep, and autism in humans. Mutations in Fragile X Mental Retardation gene 1 (FMR1), which codes for a protein that modifies the expression of many target proteins, are primarily responsible for this disorder. Genetic modifications of FMR1 can increase or decrease the overall amount of sleep in humans. A potential pharmaceutical target of FXS is dopamine, a critical neurotransmitter in the regulation of sleep and wakefulness. In fruit flies (Drosophila melanogaster) dopamine has been shown to alter sleep. The mushroom body, a structure in …


Repeat-Associated Non-Aug (Ran) Translation And Other Molecular Mechanisms In Fragile X Tremor Ataxia Syndrome, M. Rebecca Glineburg, Peter K. Todd, Nicolas Charlet-Berguerand, Chantal Sellier Feb 2018

Repeat-Associated Non-Aug (Ran) Translation And Other Molecular Mechanisms In Fragile X Tremor Ataxia Syndrome, M. Rebecca Glineburg, Peter K. Todd, Nicolas Charlet-Berguerand, Chantal Sellier

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset inherited neurodegenerative disorder characterized by progressive intention tremor, gait ataxia and dementia associated with mild brain atrophy. The cause of FXTAS is a premutation expansion, of 55 to 200 CGG repeats localized within the 5′UTR of FMR1. These repeats are transcribed in the sense and antisense directions into mutants RNAs, which have increased expression in FXTAS. Furthermore, CGG sense and CCG antisense expanded repeats are translated into novel proteins despite their localization in putatively non-coding regions of the transcript. Here we focus on two proposed disease mechanisms for FXTAS: 1) RNA …