Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

2009

Dartmouth Scholarship

Computational biology/bioinformatics

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Multifactor Dimensionality Reduction Analysis Identifies Specific Nucleotide Patterns Promoting Genetic Polymorphisms, Eric Arehart, Scott Gleim, Bill White, John Hwa, Jason H. Moore Mar 2009

Multifactor Dimensionality Reduction Analysis Identifies Specific Nucleotide Patterns Promoting Genetic Polymorphisms, Eric Arehart, Scott Gleim, Bill White, John Hwa, Jason H. Moore

Dartmouth Scholarship

The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs) constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation.