Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

Models For Hsv Shedding Must Account For Two Levels Of Overdispersion, Amalia Magaret Jan 2016

Models For Hsv Shedding Must Account For Two Levels Of Overdispersion, Amalia Magaret

UW Biostatistics Working Paper Series

We have frequently implemented crossover studies to evaluate new therapeutic interventions for genital herpes simplex virus infection. The outcome measured to assess the efficacy of interventions on herpes disease severity is the viral shedding rate, defined as the frequency of detection of HSV on the genital skin and mucosa. We performed a simulation study to ascertain whether our standard model, which we have used previously, was appropriately considering all the necessary features of the shedding data to provide correct inference. We simulated shedding data under our standard, validated assumptions and assessed the ability of 5 different models to reproduce the …


Meta-Analysis Of Genome-Wide Association Studies With Correlated Individuals: Application To The Hispanic Community Health Study/Study Of Latinos (Hchs/Sol), Tamar Sofer, John R. Shaffer, Misa Graff, Qibin Qi, Adrienne M. Stilp, Stephanie M. Gogarten, Kari E. North, Carmen R. Isasi, Cathy C. Laurie, Adam A. Szpiro Nov 2015

Meta-Analysis Of Genome-Wide Association Studies With Correlated Individuals: Application To The Hispanic Community Health Study/Study Of Latinos (Hchs/Sol), Tamar Sofer, John R. Shaffer, Misa Graff, Qibin Qi, Adrienne M. Stilp, Stephanie M. Gogarten, Kari E. North, Carmen R. Isasi, Cathy C. Laurie, Adam A. Szpiro

UW Biostatistics Working Paper Series

Investigators often meta-analyze multiple genome-wide association studies (GWASs) to increase the power to detect associations of single nucleotide polymorphisms (SNPs) with a trait. Meta-analysis is also performed within a single cohort that is stratified by, e.g., sex or ancestry group. Having correlated individuals among the strata may complicate meta-analyses, limit power, and inflate Type 1 error. For example, in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), sources of correlation include genetic relatedness, shared household, and shared community. We propose a novel mixed-effect model for meta-analysis, “MetaCor", which accounts for correlation between stratum-specific effect estimates. Simulations show that MetaCor controls …


Testing Gene-Environment Interactions In The Presence Of Measurement Error, Chongzhi Di, Li Hsu, Charles Kooperberg, Alex Reiner, Ross Prentice Nov 2014

Testing Gene-Environment Interactions In The Presence Of Measurement Error, Chongzhi Di, Li Hsu, Charles Kooperberg, Alex Reiner, Ross Prentice

UW Biostatistics Working Paper Series

Complex diseases result from an interplay between genetic and environmental risk factors, and it is of great interest to study the gene-environment interaction (GxE) to understand the etiology of complex diseases. Recent developments in genetics field allows one to study GxE systematically. However, one difficulty with GxE arises from the fact that environmental exposures are often measured with error. In this paper, we focus on testing GxE when the environmental exposure E is subject to measurement error. Surprisingly, contrast to the well-established results that the naive test ignoring measurement error is valid in testing the main effects, we find that …


Power Boosting In Genome-Wide Studies Via Methods For Multivariate Outcomes, Mary J. Emond Feb 2007

Power Boosting In Genome-Wide Studies Via Methods For Multivariate Outcomes, Mary J. Emond

UW Biostatistics Working Paper Series

Whole-genome studies are becoming a mainstay of biomedical research. Examples include expression array experiments, comparative genomic hybridization analyses and large case-control studies for detecting polymorphism/disease associations. The tactic of applying a regression model to every locus to obtain test statistics is useful in such studies. However, this approach ignores potential correlation structure in the data that could be used to gain power, particularly when a Bonferroni correction is applied to adjust for multiple testing. In this article, we propose using regression techniques for misspecified multivariate outcomes to increase statistical power over independence-based modeling at each locus. Even when the outcome …


The Clustering Of Regression Models Method With Applications In Gene Expression Data, Li-Xuan Qin, Steven G. Self Jan 2005

The Clustering Of Regression Models Method With Applications In Gene Expression Data, Li-Xuan Qin, Steven G. Self

UW Biostatistics Working Paper Series

Identification of differentially expressed genes and clustering of genes are two important and complementary objectives addressed with gene expression data. For the differential expression question, many "per-gene" analytic methods have been proposed. These methods can generally be characterized as using a regression function to independently model the observations for each gene; various adjustments for multiplicity are then used to interpret the statistical significance of these per-gene regression models over the collection of genes analyzed. Motivated by this common structure of per-gene models, we propose a new model-based clustering method -- the clustering of regression models method, which groups genes that …


Significance Analysis Of Time Course Microarray Experiments, John D. Storey, Wenzhong Xiao, Jeffrey T. Leek, Ronald G. Tompkins, Ron W. Davis Aug 2004

Significance Analysis Of Time Course Microarray Experiments, John D. Storey, Wenzhong Xiao, Jeffrey T. Leek, Ronald G. Tompkins, Ron W. Davis

UW Biostatistics Working Paper Series

Characterizing the genome-wide dynamic regulation of gene expression is important and will be of much interest in the future. However, there is currently no established method for identifying differentially expressed genes in a time course study. Here we propose a significance method for analyzing time course microarray studies that can be applied to the typical types of comparisons and sampling schemes. This method is applied to two studies on humans. In one study, genes are identified that show differential expression over time in response to in vivo endotoxin administration. Using our method 7409 genes are called significant at a 1% …


Calibrating Observed Differential Gene Expression For The Multiplicity Of Genes On The Array, Yingye Zheng, Margaret S. Pepe Jan 2004

Calibrating Observed Differential Gene Expression For The Multiplicity Of Genes On The Array, Yingye Zheng, Margaret S. Pepe

UW Biostatistics Working Paper Series

In a gene expression array study, the expression levels of thousands of genes are monitored simultaneously across various biological conditions on a small set of subjects. One goal of such studies is to explore a large pool of genes in order to select a subset of genes that appear to be differently expressed for further investigation. Of particular interest here is how to select the top k genes once genes are ranked based on their evidence for differential expression in two tissue types. We consider statistical methods that provide a more rigorous and intuitively appealing selection process for k. We …


Selecting Differentially Expressed Genes From Microarray Experiments, Margaret S. Pepe, Gary M. Longton, Garnet L. Anderson, Michel Schummer Jan 2003

Selecting Differentially Expressed Genes From Microarray Experiments, Margaret S. Pepe, Gary M. Longton, Garnet L. Anderson, Michel Schummer

UW Biostatistics Working Paper Series

High throughput technologies, such as gene expression arrays and protein mass spectrometry, allow one to simultaneously evaluate thousands of potential biomarkers that distinguish different tissue types. Of particular interest here is cancer versus normal organ tissues. We consider statistical methods to rank genes (or proteins) in regards to differential expression between tissues. Various statistical measures are considered and we argue that two measures related to the Receiver Operating Characteristic Curve are particularly suitable for this purpose. We also propose that sampling variability in the gene rankings be quantified and suggest using the “selection probability function”, the probability distribution of rankings …