Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

PDF

Dartmouth College

Bacterial

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole Mar 2014

Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole

Dartmouth Scholarship

We constructed a library of in-frame deletion mutants targeting each gene in Pseudomonas aeruginosa PA14 predicted to participate in cyclic di-GMP (c-di-GMP) metabolism (biosynthesis or degradation) to provide a toolkit to assist investigators studying c-di-GMP-mediated regulation by this microbe. We present phenotypic assessments of each mutant, including biofilm formation, exopolysaccharide (EPS) production, swimming motility, swarming motility, and twitch motility, as a means to initially characterize these mutants and to demonstrate the potential utility of this library.


High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Sep 2011

High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of …


Variation In Molybdenum Content Across Broadly Distributed Populations Of Arabidopsis Thaliana Is Controlled By A Mitochondrial Molybdenum Transporter (Mot1), Ivan Baxter, Balasubramaniam Muthukumar, Hyeong Cheol Park, Peter Buchner, Brett Lahner, John Danku, Keyan Zhao, Joohyun Lee, Malcolm J. Hawkesford, Mary Lou Guerinot, David E. Salt Feb 2008

Variation In Molybdenum Content Across Broadly Distributed Populations Of Arabidopsis Thaliana Is Controlled By A Mitochondrial Molybdenum Transporter (Mot1), Ivan Baxter, Balasubramaniam Muthukumar, Hyeong Cheol Park, Peter Buchner, Brett Lahner, John Danku, Keyan Zhao, Joohyun Lee, Malcolm J. Hawkesford, Mary Lou Guerinot, David E. Salt

Dartmouth Scholarship

Molybdenum (Mo) is an essential micronutrient for plants, serving as a cofactor for enzymes involved in nitrate assimilation, sulfite detoxification, abscisic acid biosynthesis, and purine degradation. Here we show that natural variation in shoot Mo content across 92 Arabidopsis thaliana accessions is controlled by variation in a mitochondrially localized transporter (Molybdenum Transporter 1 - MOT1) that belongs to the sulfate transporter superfamily. A deletion in the MOT1 promoter is strongly associated with low shoot Mo, occurring in seven of the accessions with the lowest shoot content of Mo. Consistent with the low Mo phenotype, MOT1 expression in low Mo accessions …


Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole Jul 2006

Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole

Dartmouth Scholarship

A tool kit of vectors was designed to manipulate and express genes from a wide range of gram-negative species by using in vivo recombination. Saccharomyces cerevisiae can use its native recombination proteins to combine several amplicons in a single transformation step with high efficiency. We show that this technology is particularly useful for vector design. Shuttle, suicide, and expression vectors useful in a diverse group of bacteria are described and utilized. This report describes the use of these vectors to mutate clpX and clpP of the opportunistic pathogen Pseudomonas aeruginosa and to explore their roles in biofilm formation and surface …


Cole1 Copy Number Mutants., Londa Schmidt, Joseph Inselburg Aug 1982

Cole1 Copy Number Mutants., Londa Schmidt, Joseph Inselburg

Dartmouth Scholarship

A deletion mutant of the colicin E1-derived plasmid, pDMS6642, exhibited an approximately fourfold increase in copy number. We subsequently isolated hydroxylamine-induced mutants of that plasmid that had a further increase in copy number. Analysis of them suggests that the increased copy number of pDMS6642 is associated with transcriptional readthrough from a Tn3 transposon into the region of ColE1 containing information that influences plasmid replication. The hydroxylamine mutation in one copy number mutant appeared to increase the plasmid copy number by stimulating readthrough transcription from the Tn3 transposon into the ColE1 replication control region, whereas the other hydroxylamine mutation acts by …