Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Forest Biology

Biological Sciences Faculty Research

Nitrogen saturation

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Twenty-Five Year Response Of The Herbaceous Layer Of A Temperate Hardwood Forest To Elevated Nitrogen Deposition, Frank S. Gilliam, Nicole Turrill Welch, Anne Hockenberry Phillips, Jake H. Billmyer, William T. Peterjohn, Zachariah K. Fowler, Christopher A. Walter, Mark B. Burnham, Jeffrey D. May, Mary Beth Adams Jan 2016

Twenty-Five Year Response Of The Herbaceous Layer Of A Temperate Hardwood Forest To Elevated Nitrogen Deposition, Frank S. Gilliam, Nicole Turrill Welch, Anne Hockenberry Phillips, Jake H. Billmyer, William T. Peterjohn, Zachariah K. Fowler, Christopher A. Walter, Mark B. Burnham, Jeffrey D. May, Mary Beth Adams

Biological Sciences Faculty Research

Increasing rates of atmospheric deposition of nitrogen (N) present a novel threat to the biodiversity of terrestrial ecosystems. Many forests are particularly susceptible to excess N given their proximity to sources of anthropogenic N emissions. This study summarizes results of a 25-yr treatment of an entire central Appalachian hardwood forest watershed via aerial applications of N with a focus on effects of added N on the cover, species richness, and composition of the herbaceous layer. Research was carried out on two watersheds of the Fernow Experimental Forest (FEF), West Virginia. The long-term reference watershed at FEF (WS4) was used as …


Nitrogen Deposition Contributes To Soil Acidification In Tropical Ecosystems, Xiankai Lu, Qinggong Mao, Frank S. Gilliam, Yiqi Luo, Jiangming Mo Jun 2014

Nitrogen Deposition Contributes To Soil Acidification In Tropical Ecosystems, Xiankai Lu, Qinggong Mao, Frank S. Gilliam, Yiqi Luo, Jiangming Mo

Biological Sciences Faculty Research

Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening ecosystem health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long-term N deposition on soil acidification processes in tropical forests. We have established a long-term N deposition experiment in an N-rich lowland tropical forest of Southern China since 2002 with N addition as NH4NO3 of 0, 50, 100 and 150 kg …


Response Of The Herbaceous Layer Of Forest Ecosystems To Excess Nitrogen Deposition, Frank S. Gilliam Nov 2006

Response Of The Herbaceous Layer Of Forest Ecosystems To Excess Nitrogen Deposition, Frank S. Gilliam

Biological Sciences Faculty Research

  • 1 This review brings into focus what is known about the response of the herbaceous layer of forest ecosystems to increasing nitrogen deposition. The emphasis on forests in general is important for two reasons. First, forests often occupy areas receiving high rates of atmospheric deposition of N. Second, compared with herb-dominated communities, about which much is known regarding response to excess N, forests generally display greater biological and structural complexity. The more specific focus on the herbaceous layer – here defined as all vascular (herbaceous and woody) plants ≤ 1 m in height – is warranted because most of the …


Effects Of Silvicultural Practices On Soil Carbon And Nitrogen In A Nitrogen Saturated Central Appalachian (Usa) Hardwood Forest Ecosystem, Frank S. Gilliam, David A. Dick, Michelle L. Kerr, Mary Beth Adams Jan 2004

Effects Of Silvicultural Practices On Soil Carbon And Nitrogen In A Nitrogen Saturated Central Appalachian (Usa) Hardwood Forest Ecosystem, Frank S. Gilliam, David A. Dick, Michelle L. Kerr, Mary Beth Adams

Biological Sciences Faculty Research

Silvicultural treatments represent disturbances to forest ecosystems often resulting in transient increases in net nitrification and leaching of nitrate and base cations from the soil. Response of soil carbon (C) is more complex, decreasing from enhanced soil respiration and increasing from enhanced postharvest inputs of detritus. Because nitrogen (N) saturation can have similar effects on cation mobility, timber harvesting in N-saturated forests may contribute to a decline in both soil C and base cation fertility, decreasing tree growth. Although studies have addressed effects of either forest harvesting or N saturation separately, few data exist on their combined effects. Our study …


Factors Influencing Spatial Variability In Nitrogen Processing In Nitrogen-Saturated Soils, Frank S. Gilliam, Charles C. Somerville, Nikki L. Lyttle, Mary Beth Adams Jan 2001

Factors Influencing Spatial Variability In Nitrogen Processing In Nitrogen-Saturated Soils, Frank S. Gilliam, Charles C. Somerville, Nikki L. Lyttle, Mary Beth Adams

Biological Sciences Faculty Research

Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of Nsaturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturatedsoils from FEF, and how these effects varied between high N-processing vs. low N-processingsoils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O2 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots …