Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Forest Biology

Iowa State University

Steven J. Hall

2015

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Environmental Forcing Does Not Induce Diel Or Synoptic Variation In The Carbon Isotope Content Of Forest Soil Respiration, Steven J. Hall, D. R. Bowling, J. E. Egan Aug 2015

Environmental Forcing Does Not Induce Diel Or Synoptic Variation In The Carbon Isotope Content Of Forest Soil Respiration, Steven J. Hall, D. R. Bowling, J. E. Egan

Steven J. Hall

Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ13C) of CO2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO2 and δ13C of CO2 in the soil efflux, the soil gas profile, and forest air. There …


Large Fluxes And Rapid Turnover Of Mineral-Associated Carbon Across Topographic Gradients In A Humid Tropical Forest: Insights From Paired 14c Analysis, Steven J. Hall, G. Mcnicol, T. Natake, W. L. Silver Apr 2015

Large Fluxes And Rapid Turnover Of Mineral-Associated Carbon Across Topographic Gradients In A Humid Tropical Forest: Insights From Paired 14c Analysis, Steven J. Hall, G. Mcnicol, T. Natake, W. L. Silver

Steven J. Hall

It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised the …