Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Multiphysics Modeling To Enhance Understanding Of Microwave Heating Of Food In Domestic Ovens, Jiajia Chen Jun 2015

Multiphysics Modeling To Enhance Understanding Of Microwave Heating Of Food In Domestic Ovens, Jiajia Chen

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Nonuniform heating is the biggest issue in the microwave heating of prepared meals. Multiphysics based models are promising tools to improve microwave heating uniformity by properly designing the food product. However, limited availability of accurate temperature-dependent material properties, inadequate model prediction accuracy, and high computational power and complexity in model development are three gaps that greatly limited the application of these models in the food industry.

To fill in the gaps, firstly, we developed a multitemperature calibration protocol to measure temperature-dependent dielectric properties (dielectric constant and loss factor). The temperature-dependent dielectric and thermal (thermal conductivity and specific heat capacity) properties …


A Finite Element Method Based Microwave Heat Transfer Modeling Of Frozen Multi-Component Foods, Krishnamoorthy Pitchai Apr 2015

A Finite Element Method Based Microwave Heat Transfer Modeling Of Frozen Multi-Component Foods, Krishnamoorthy Pitchai

Department of Food Science and Technology: Dissertations, Theses, and Student Research

Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on “cook-and-look” approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of …


A Mathematical Model Of Meat Cooking Based On Polymer-Solvent Analogy, M. Chapwanya, Nissreen Misra Jan 2015

A Mathematical Model Of Meat Cooking Based On Polymer-Solvent Analogy, M. Chapwanya, Nissreen Misra

Articles

Mathematical modelling of transport phenomena in food processes is vital to understand the process dynamics. In this work, we study the process of double sided cooking of meat by developing a mathematical model for the simultaneous heat and mass transfer. The constitutive equations for the heat and mass transport are based on Fourier conduction, and the Flory–Huggins theory respectively, formulated for a two-phase transport inside a porous medium. We investigate a reduced one-dimensional case to verify the model, by applying appropriate boundary conditions. The results of the simulation agree well with experimental findings reported in literature. Finally, we comment upon …