Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Food Science

2015

Antimicrobial coatings

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Spray Fabrication Of Layer-By-Layer Antimicrobial N-Halamine Coatings, Anna Denis-Rohr Jul 2015

Spray Fabrication Of Layer-By-Layer Antimicrobial N-Halamine Coatings, Anna Denis-Rohr

Masters Theses

Antimicrobial coatings in which the active agent (e.g. N-halamine) can regenerate activity represent a promising way to prevent microbial cross-contamination. A reported method for applying coatings containing antimicrobial N-halamines is layer-by-layer (LbL) application of polyelectrolytes, which form N-halamines upon cross-linking. Prior reports on dip layer-by-layer (LbL) fabrication have demonstrated the potential of this coating technology; however, spray LbL fabrication would enable more rapid coating and represents a more commercially translatable application technique. In this work, dip and spray LbL methods were used to coat polypropylene (PP) with N-halamine containing bilayers consisting of cross-linked polyethylenimine (PEI) and poly(acrylic acid) (PAA). Further …


Layer-By-Layer Antimicrobial N-Halamine Polymer Coatings For Food Contact Materials, Luis J. Bastarrachea Gutierrez Mar 2015

Layer-By-Layer Antimicrobial N-Halamine Polymer Coatings For Food Contact Materials, Luis J. Bastarrachea Gutierrez

Doctoral Dissertations

Cross contamination during food processing represents a risk for public health and financial burden. Surface modification of food contact materials to render them antimicrobial can be effective against such risk. The objective of the present work was to develop antimicrobial coatings with the potential to be applied in a variety of food contact materials. The polymer coatings developed became antimicrobial by incorporation of a type of chlorinated compounds called N-halamines, capable of regenerating their antimicrobial activity. Two layer-by-layer (LbL) assembly surface modification procedures were followed. In the first procedure, bilayers of branched polyethyleneimine (PEI) and poly(acrylic acid) (PAA) were applied …