Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

Selected Works

John E. Sawyer

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Winter Rye Cover Crop Biomass Production, Degradation, And N Recycling, J. L. Pantoja, J. E. Sawyer, D. W. Barker Apr 2017

Winter Rye Cover Crop Biomass Production, Degradation, And N Recycling, J. L. Pantoja, J. E. Sawyer, D. W. Barker

John E. Sawyer

Winter rye (Secale cereale L.) as a cover crop can take up residual inorganic N between annual row crops and therefore be used to help reduce NO3 -–N loss from fields and movement to water systems. However, does the rye N uptake affect N recycling to soil and add to plant available N? The rye carbon:nitrogen (C:N) ratio could also influence N recycling. The objectives of this study were to evaluate rye biomass degradation and N recycling after spring rye termination in a no-till corn (Zea mays L.) - soybean [Glycine max. (L.) Merr.] rotation. A two year experiment (2010-2011) …


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer Jul 2016

In-Season N Fertilization Strategies Using Active Sensors, Daniel Barker, John Sawyer

John E. Sawyer

The objectives of this project were to measure corn yield response to applied nitrogen (N) fertilizer based on active canopy sensing during the mid-vegetative corn growth stage (V10) and compare yield and N use efficiency between pre-plant N (PP-N), pre-plant + sensor N (PP+S-N), split N strategy (SNS), and rescue N strategy (RNS).


Impacts Of Cover Crops On Phosphorus And Nitrogen Loss With Surface Runoff, Antonio Mallarino, Richard Cruse, Dan Jaynes, John Sawyer, Pablo Barbieri Jul 2016

Impacts Of Cover Crops On Phosphorus And Nitrogen Loss With Surface Runoff, Antonio Mallarino, Richard Cruse, Dan Jaynes, John Sawyer, Pablo Barbieri

John E. Sawyer

Iowa research has demonstrated that cover crops can improve soil productivity and water quality by increasing soil organic matter and reducing nitrate nitrogen (N) leaching. Other research has investigated and is investigating the agronomic and economic viability of using cereal rye cover crops in continuous corn or corn-soybean rotations. However, no Iowa research has evaluated under natural rainfall the impact of cover crops on phosphorus (P) and N loss with surface runoff interacting with other management practices. The need for this type of research was indicated in the Iowa Nutrient Reduction Strategy documents. This effort assessed what would be needed …


Impact Of 4r Management On Crop Production And Nitrate-Nitrogen Loss In Tile Drainage, Matthew Helmers, John Sawyer, Josh Sievers Jul 2016

Impact Of 4r Management On Crop Production And Nitrate-Nitrogen Loss In Tile Drainage, Matthew Helmers, John Sawyer, Josh Sievers

John E. Sawyer

Corn Belt corn and soybean producers are increasingly challenged to maximize crop production while addressing the contributions farm practices make to Gulf hypoxia. Based on the need for nitrate-N reductions to meet water quality goals, new management practices are needed to reduce nitrate-N losses at minimal cost and maximum economic benefits. This three-year field research and demonstration project is evaluating various promising N management methods and technologies by documenting the nitrate-N export and crop yield from various systems.