Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade Nov 2017

No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands store roughly one-third of the terrestrial soil carbon and release the potent greenhouse gas methane (CH4) to the atmosphere, making these wetlands among the most important ecosystems in the global carbon cycle. Despite their importance, the controls of anaerobic decomposition of organic matter to carbon dioxide (CO2) and CH4 within peatlands are not well understood. It is known, however, that the enzymes responsible for CH4 production require cobalt, iron and nickel, and there is a growing appreciation for the potential role of trace metal limitation in anaerobic decomposition. To explore the possibility of …


What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi Oct 2017

What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, …


Responses Of Agroecosystems To Climate Change: Specifics Of Resilience In The Mid-Latitude Region, Menas Kafatos, Seung Hee Kim, Chul-Hee Lim, Jinwon Kim, Woo-Kyun Lee Aug 2017

Responses Of Agroecosystems To Climate Change: Specifics Of Resilience In The Mid-Latitude Region, Menas Kafatos, Seung Hee Kim, Chul-Hee Lim, Jinwon Kim, Woo-Kyun Lee

Mathematics, Physics, and Computer Science Faculty Articles and Research

This study examines the productivity and resilience of agroecosystems in the Korean Peninsula. Having learned valuable lessons from a Chapman University project funded by the United States Department of Agriculture which concentrated on the semi-arid region of southwestern United States, our joint Korea—Chapman University team has applied similar methodologies to the Korean Peninsula, which is itself an interesting study case in the mid-latitude region. In particular, the Korean Peninsula has unique agricultural environments due to differences in political and socioeconomic systems between South Korea and North Korea. Specifically, North Korea has been suffering from food shortages due to natural disasters, …


Synergistic Use Of Remote Sensing And Modeling To Assess An Anomalously High Chlorophyll-A Event During Summer 2015 In The South Central Red Sea, Wenzhao Li, Hesham El-Askary, K. P. Manikandan, Mohamed A. Qurban, Michael J. Garay, Olga V. Kalishnikova Jul 2017

Synergistic Use Of Remote Sensing And Modeling To Assess An Anomalously High Chlorophyll-A Event During Summer 2015 In The South Central Red Sea, Wenzhao Li, Hesham El-Askary, K. P. Manikandan, Mohamed A. Qurban, Michael J. Garay, Olga V. Kalishnikova

Mathematics, Physics, and Computer Science Faculty Articles and Research

An anomalously high chlorophyll-a (Chl-a) event (>2 mg/m3) during June 2015 in the South Central Red Sea (17.5° to 22°N, 37° to 42°E) was observed using Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellite platforms. This differs from the low Chl-a values (<0.5 mg/m3) usually encountered over the same region during summertime. To assess this anomaly and possible causes, we used a wide range of oceanographical and meteorological datasets, including Chl-a concentrations, sea surface temperature (SST), sea surface height (SSH), mixed layer depth (MLD), ocean current velocity and aerosol optical depth (AOD) obtained from different sensors and models. Findings confirmed this anomalous behavior in the spatial domain using Hovmöller data analysis techniques, while a time series analysis addressed monthly and daily variability. Our analysis suggests that a combination of factors controlling nutrient supply contributed to the anomalous phytoplankton growth. These factors include horizontal transfer of upwelling water through eddy circulation and possible mineral fertilization from atmospheric dust deposition. Coral reefs might have provided extra nutrient supply, yet this is out of the scope of our analysis. We thought that dust deposition from a coastal dust jet event in late June, coinciding with the phytoplankton blooms in the area under investigation, might have also contributed as shown by our AOD findings. However, a lag cross correlation showed a two- month lag between strong dust outbreak and the high Chl-a anomaly. The high Chl-a concentration at the edge of the eddy emphasizes the importance of horizontal advection in fertilizing oligotrophic (nutrient poor) Red Sea waters.


Estimation Of The Virtual Water Content Of Main Crops On The Korean Peninsula Using Multiple Regional Climate Models And Evapotranspiration Methods, Chul-Hee Lim, Seung Hee Kim, Yuyoung Choi, Menas Kafatos, Woo-Kyun Lee Jul 2017

Estimation Of The Virtual Water Content Of Main Crops On The Korean Peninsula Using Multiple Regional Climate Models And Evapotranspiration Methods, Chul-Hee Lim, Seung Hee Kim, Yuyoung Choi, Menas Kafatos, Woo-Kyun Lee

Mathematics, Physics, and Computer Science Faculty Articles and Research

Sustainable agriculture in the era of climate change needs to find solutions for the retention and proper utilization of water. This study proposes an ensemble approach for identifying the virtual water content (VWC) of main crops on the Korean Peninsula in past and future climates. Ensemble results with low uncertainty were obtained using three regional climate models, five potential evapotranspiration methods, and the Environmental Policy Integrated Climate (EPIC) crop model. The productivity results of major crops (rice and maize) under climate change are likely to increase more than in the past based on the ensemble results. The ensemble VWC is …