Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Monitoring Temporal Change In Riparian Vegetation Of Great Basin National Park, E. A. Beever, D. A. Pyke, J. C. Chambers, F. Landau, S. D. Smith, K. Murray Jan 2005

Monitoring Temporal Change In Riparian Vegetation Of Great Basin National Park, E. A. Beever, D. A. Pyke, J. C. Chambers, F. Landau, S. D. Smith, K. Murray

Life Sciences Faculty Research

Disturbance in riparian areas of semiarid ecosystems involves complex interactions of pulsed hydrologic flows, herbivory, fire, climatic effects, and anthropogenic influences. We resampled riparian vegetation within ten 10-m × 100-m plots that were initially sampled in 1992 in 4 watersheds of the Snake Range, east central Nevada. Our finding of significantly lower coverage of grasses, forbs, and shrubs within plots in 2001 compared with 1992 was not consistent with the management decision to remove livestock grazing from the watersheds in 1999. Change over time in cover of life-forms or bare ground was not predicted by scat counts within plots in …


Structure Of Woody Riparian Vegetation In Great Basin National Park, S. D. Smith, K. J. Murray, F. H. Landau, A. M. Sala Jan 1995

Structure Of Woody Riparian Vegetation In Great Basin National Park, S. D. Smith, K. J. Murray, F. H. Landau, A. M. Sala

Life Sciences Faculty Research

The community composition and population structure of the woody riparian vegetation in Great Basin National Park are described. Community analyses were accomplished by sampling 229 plots along an elevational gradient of 8 major stream systems in the Park. TWINSPAN analysis identified 4 primary species groups that were characterized by Populus tremuloides (aspen), Abies concolor (white fir), Rosa woodsii (Woods rose), and Populus angustifolia (narrowleaf cottonwood) as dominants, respectively. Detrended Correspondence Analysis (DECORANA) showed that the most important environmental factors associated with the distribution of species were elevation and slope, with flood-related physiographic factors having a secondary effect. Analysis of size-class …


Fire In A Riparian Shrub Community: Postburn Water Relations In The Tamarix-Salix Association Along The Lower Colorado River, S. D. Smith, D. E. Busch Jan 1992

Fire In A Riparian Shrub Community: Postburn Water Relations In The Tamarix-Salix Association Along The Lower Colorado River, S. D. Smith, D. E. Busch

Life Sciences Faculty Research

Higher water potentials in recovering burned salt-cedar (Tamarix ramosissima) relative to unburned plants and the opposite situation in willow (Salix gooddingii) provide evidence that postfire water stress is reduced in the former but not the latter. Similarly, diurnal patterns of stomatal conductance in these taxa are consistent with the existence of more vigor in burned salt-cedar than willow. Plots of water potential and transpiration demonstrate that hydraulic efficiencies may contribute to differences in fire recovery.


Riparian Plant Water Relations Along The North Fork Of The Kings River, California, J. L. Nachlinger, S. D. Smith, R. J. Risser Jan 1989

Riparian Plant Water Relations Along The North Fork Of The Kings River, California, J. L. Nachlinger, S. D. Smith, R. J. Risser

Life Sciences Faculty Research

Plant water relations of five obligate ripar-ian species were studied along California's North Fork Kings River. Diurnal stomatal conductance, transpi-ration, and xylem pressure potentials were measured throughout the 1986 growing season and in mid-season in 1987. Patterns were similar for all species although absolute values varied considerably. Maximum stomatal conductance occurred early in the day and season during favorable environmental conditions and decreased as air temperature and the vapor pressure difference between the leaf and air increased. Maximum transpiration rates occurred in mid-morning and mid-summer resulting in estimated daily water losses per unit sunlit leaf area of 163-328 mol H2O …


An Isotopic Analysis Of The Hydrology And Riparian Vegetation Water Sources On Bishop Creek, M. L. Space, J. W. Hess, S. D. Smith Jan 1989

An Isotopic Analysis Of The Hydrology And Riparian Vegetation Water Sources On Bishop Creek, M. L. Space, J. W. Hess, S. D. Smith

Life Sciences Faculty Research

Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into Bishop Creek below the headwaters is primarily derived from ground water. The average δD and δ18O values are significantly different for surface water and ground water that an isotopic analysis can delineate between these two components of flow. Therefore isotopic shifts along the creek can determine gaining reaches. In addition, by knowing …