Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Impacts Of The Deepwater Horizon Oil Spill On Microbial-Mediated Cellulose Decomposition In Mississippi Gulf Coast Salt Marshes, Jerrid Shawn Boyette May 2015

Impacts Of The Deepwater Horizon Oil Spill On Microbial-Mediated Cellulose Decomposition In Mississippi Gulf Coast Salt Marshes, Jerrid Shawn Boyette

Master's Theses

Field studies were conducted to examine the effects of the Deepwater Horizon oil spill on rates of marsh organic matter decomposition. Decomposition in surface and subsurface marsh sediments was assessed in stands of Spartina alterniflora and Juncus roemerianus in 9 Mississippi Gulf Coast marshes exposed to differing oiling intensities. The cotton strip bioassay technique was used as a proxy for cellulose decomposition. In addition, rates of microbial respiration, fungal biomass (ergosterol) and nutrients (C:N, C:P) of surface sediment cotton strips were also quantified. Subsurface cotton strip decay, as determined by losses in tensile strength, were significantly different among marsh …


Natural And Lignocellulose-Enriched Microbial Communities In Great Boiling Spring, Nv, Jessica Cole Dec 2012

Natural And Lignocellulose-Enriched Microbial Communities In Great Boiling Spring, Nv, Jessica Cole

UNLV Theses, Dissertations, Professional Papers, and Capstones

The natural microbial communities present in Great Boiling Spring were investigated and contrasted against those present after in situ enrichment with lignocellulose. High-throughput cultivation-independent DNA sequencing of the V8 region of the small subunit (SSU) rRNA gene generated a total of 274,119 quality-filtered pyrosequencing fragments. Twelve natural spring samples were analyzed, including four high-temperature water samples and eight sediment samples ranging from 87 - 62 °C. Eight lignocellulosic enrichments incubated in the spring sediment and water at two high-temperature sites were analyzed. The natural water communities were found to be extremely uneven but relatively constant throughout time. The natural sediment …


Enhanced Microbial Utilization Of Recalcitrant Cellulose By An Ex Vivo Cellulosome-Microbe Complex, Chun You, Xiao-Zhou Zhang, Noppadon Sathitsuksanoh, Lee R. Lynd Dec 2011

Enhanced Microbial Utilization Of Recalcitrant Cellulose By An Ex Vivo Cellulosome-Microbe Complex, Chun You, Xiao-Zhou Zhang, Noppadon Sathitsuksanoh, Lee R. Lynd

Dartmouth Scholarship

A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulosome, a noncomplexed cellulase mixture with the same catalytic components, and a commercial fungal enzyme mixture were investigated on low-accessibility recalcitrant Avicel and high accessibility regenerated amorphous cellulose (RAC). The cellbound cellulosome exhibited 4.5- and 2.3-fold-higher hydrolysis ability than cell-free cellulosome on Avicel and RAC, respectively. The cellulosome-microbe synergy was not completely …


High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Sep 2011

High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of …


Cellulose- And Xylan-Degrading Thermophilic Anaerobic Bacteria From Biocompost, M. V. Sizova, J. A. Izquierdo, N. S. Panikov, L. R. Lynd Feb 2011

Cellulose- And Xylan-Degrading Thermophilic Anaerobic Bacteria From Biocompost, M. V. Sizova, J. A. Izquierdo, N. S. Panikov, L. R. Lynd

Dartmouth Scholarship

Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S …


Cellulose Utilization By Clostridium Thermocellum: Bioenergetics And Hydrolysis Product Assimilation, Yi-Heng P. Zhang, Lee R. Lynd May 2005

Cellulose Utilization By Clostridium Thermocellum: Bioenergetics And Hydrolysis Product Assimilation, Yi-Heng P. Zhang, Lee R. Lynd

Dartmouth Scholarship

The bioenergetics of cellulose utilization by Clostridium thermocellum was investigated. Cell yield and maintenance parameters, Y(X/ATP)True = 16.44 g cell/mol ATP and m = 3.27 mmol ATP/g cell per hour, were obtained from cellobiose-grown chemostats, and it was shown that one ATP is required per glucan transported. Experimentally determined values for G(ATP)P-T (ATP from phosphorolytic beta-glucan cleavage minus ATP for substrate transport, mol ATP/mol hexose) from chemostats fed beta-glucans with degree of polymerization (DP) 2-6 agreed well with the predicted value of (n-2)/n [corrected] (n = mean cellodextrin DP assimilated). A mean G(ATP)(P-T) value of 0.52 +/- 0.06 was calculated …