Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Arthropod Resistant Tomatoes: Screening Tools, Yield And Nutritional Quality Of Interspecific Hybrids, Mohammad Hasan Salman Ali Dawood Jan 2020

Arthropod Resistant Tomatoes: Screening Tools, Yield And Nutritional Quality Of Interspecific Hybrids, Mohammad Hasan Salman Ali Dawood

Theses and Dissertations--Plant and Soil Sciences

Tomato (Solanum lycopersicum) is one of the most economically important vegetable crops grown around globe but is a host for numerous pests and pathogens. In the future, tomato breeders will have to focus on increasing fruit quantity and on enhancing pest resistance. Many accessions of the wild relative of tomato, S. habrochaites display high levels of resistance towards arthropods such as spider mites. The presence of the sesquiterpene hydrocarbon, 7-epi-zingiberene, found in S. habrochaites type IV trichomes has been associated with arthropod resistance. However, the presence of other compounds in its trichome secretions may also be related …


Nanomaterials For Double-Stranded Rna Delivery, Stuart Lichtenberg Jan 2019

Nanomaterials For Double-Stranded Rna Delivery, Stuart Lichtenberg

Theses and Dissertations--Plant and Soil Sciences

RNA interference has enormous potential as a potent, specific, and environmentally friendly alternative to small molecule pesticides for crop protection. The use of exogenous double-stranded RNA offers flexibility in targeting and use in crops in which transgenic manipulation is not an option. The combination of RNAi with nanotechnology offers further advantages that are not available with dsRNA alone. In this work, I have evaluated several different combinations of nanomaterials and polymers for use in RNAi-based pest control systems. First, I have characterized the use of chitosan/dsRNA polyplex nanoparticles for gene knockdown using the model nematode Caenorhabditis elegans. Though chitosan/dsRNA …


Can Increasing Grass-Fungal Endophyte Symbiotic Diversity Enhance Grassland Ecosystem Functioning?, Mahtaab Bagherzadeh Jan 2018

Can Increasing Grass-Fungal Endophyte Symbiotic Diversity Enhance Grassland Ecosystem Functioning?, Mahtaab Bagherzadeh

Theses and Dissertations--Plant and Soil Sciences

The relationship between biodiversity and ecosystem functioning is important in maintaining agroecosystem sustainability. Plant-microbe symbioses, such as exists between the grass tall fescue (Schedonorus arundinaceum) and the asexual fungal endophyte Epichloë coenophiala, can be utilized to enhance agroecosystem functions, such as herbivore resistance. “Novel” E. coenophiala strains that vary in the production of mammal- and insect-toxic compounds have been identified, inserted into tall fescue cultivars, and are planted in pastures globally. Novel fungal endophyte-tall fescue associations may have divergent ecosystem function effects. This study assessed effects of different fescue-endophyte symbiotic combinations on pasture ecosystem function, including aboveground …


Grassland Sustainability In Kentucky: Case Studies Quantifying The Effects Of Climate Change On Slug Herbivory In Pastures And Different Home Lawn Systems On Turf Greenhouse Gas Emissions, Daniel Adam Weber Jan 2014

Grassland Sustainability In Kentucky: Case Studies Quantifying The Effects Of Climate Change On Slug Herbivory In Pastures And Different Home Lawn Systems On Turf Greenhouse Gas Emissions, Daniel Adam Weber

Theses and Dissertations--Plant and Soil Sciences

Grasslands comprise the greatest biome by land area, are sensitive to environmental factors affected by climate change, and can impact future climate change through their ability to store and release greenhouse gasses (GHGs). I performed two studies: 1) evaluated the effects of increased temperature and precipitation on slug herbivory/abundance and pasture forage production; 2) quantified different homeowner lawn system effects on soil-to-atmosphere GHG emissions. Climate change will likely affect pasture forage production, with implications for slug herbivory and abundance. I found little evidence that slugs have or will have significant effects on pasture production or plant community. Warming altered the …