Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

The Investigations Of Nps Modulated Immunity And Immunometabolism, Brittney Leigh Ruedlinger Dec 2021

The Investigations Of Nps Modulated Immunity And Immunometabolism, Brittney Leigh Ruedlinger

Biomedical Sciences Theses & Dissertations

Cancers remain in the top noncommunicable diseases responsible for premature mortality. The heterogeneity among cancers and within tumors makes treating them ever more challenging. Our misfortune for developing cures is mocked by cancer, with the lowest probability of success (PoS) through clinical trials and FDA approval. At the basic level, there are generally two broad gaps impeding cancer eradication: the unidentified shared mechanism(s) exploited by all cancers and the therapeutic approach to intervene. Nanosecond pulse stimulation (NPS) offers a unique approach since its broad impacts intersect those often hijacked by oncogenesis. Metabolic pathways, known for dysfunctions among cancers, share a …


Evaluation Of The Cytotoxyc Effects Of Lmdf5-7 On A Human T-Cell Leukemia Cell Line, Andrea F. Ibarra Chacon May 2021

Evaluation Of The Cytotoxyc Effects Of Lmdf5-7 On A Human T-Cell Leukemia Cell Line, Andrea F. Ibarra Chacon

Open Access Theses & Dissertations

According to World Health Organization (WHO), cancer is the second leading cause of death worldwide, with 9.6 million deaths in 2018 . In the United States, an estimated 434,982 people were living with cancer during 2017 . Leukemia is the most common blood cancer in children from birth to 14 years old . In particular, Hispanic children in the United States experience a higher incidence rate of leukemia . Therefore, the discovery of novel cancer therapies is necessary to help those affected survive the disease. A new compound, LMDF5-7 was investigated and found to have anticancer properties that can help …


Analyzing The Effects Of E-Hook Peptides On Kinesin-1, Ashton Ward Murrah, Baylee Hope Howard May 2021

Analyzing The Effects Of E-Hook Peptides On Kinesin-1, Ashton Ward Murrah, Baylee Hope Howard

Honors Theses

Cancer is the second leading cause of death in the United States. Cancerous growth is a result of oncogenes, or mutated genes that increase the rate of cell division in an uncontrolled manner. Cell division, which consists of mitosis and cytokinesis phases, is dependent upon the active movement of kinesin motor proteins along microtubules to rearrange the cytoskeleton for equitable distribution of genetic material to daughter cells. As kinesins are vital to this process, if we could prevent kinesin from binding to the microtubules, cell division would cease.

The goal of this study is to develop a method to prevent …


A New Mathematical Theory For The Dynamics Of Large Tumor Populations, A Potential Mechanism For Cancer Dormancy & Recurrence And Experimental Observation Of Melanoma Progression In Zebrafish, Adeyinka A. Lesi Jan 2021

A New Mathematical Theory For The Dynamics Of Large Tumor Populations, A Potential Mechanism For Cancer Dormancy & Recurrence And Experimental Observation Of Melanoma Progression In Zebrafish, Adeyinka A. Lesi

Dissertations and Theses

Cancer, a family of over a hundred disease varieties, results in 600,000 deaths in the U.S. alone. Yet, improvements in imaging technology to detect disease earlier, pharmaceutical developments to shrink or eliminate tumors, and modeling of biological interactions to guide treatment have prevented millions of deaths. Cancer patients with initially similar disease can experience vastly different outcomes, including sustained recovery, refractory disease or, remarkably, recurrence years after apparently successful treatment. The current understanding of such recurrences is that they depend on the random occurrence of critical mutations. Clearly, these biological changes appear to be sufficient for recurrence, but are they …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


Position-Scanning Peptide Libraries As Particle Immunogens For Improving Cd8+ T-Cell Responses, Michael C. Vega Jan 2021

Position-Scanning Peptide Libraries As Particle Immunogens For Improving Cd8+ T-Cell Responses, Michael C. Vega

Faculty Peer-Reviewed Publications

Short peptides reflecting major histocompatibility complex (MHC) class I (MHC-I) epitopes frequently lack sufficient immunogenicity to induce robust antigen (Ag)-specific CD8+ T cell responses. In the current work, it is demonstrated that position-scanning peptide libraries themselves can serve as improved immunogens, inducing Ag-specific CD8+ T cells with greater frequency and function than the wild-type epitope. The approach involves displaying the entire position-scanning library onto immunogenic nanoliposomes. Each library contains the MHC-I epitope with a single randomized position. When a recently identified MHC-I epitope in the glycoprotein gp70 envelope protein of murine leukemia virus (MuLV) is assessed, only one …


Investigating The Antitumor Effects Of A Dsrna-Nanoparticle Complex In An In Vitro Ovarian Cancer Model, Aaron Lewis Jan 2021

Investigating The Antitumor Effects Of A Dsrna-Nanoparticle Complex In An In Vitro Ovarian Cancer Model, Aaron Lewis

Theses and Dissertations (Comprehensive)

An estimated 1 in 70 women will be diagnosed with ovarian cancer in their lifetime. Despite advanced detection and treatment methods, it remains a silent killer with an expected survival rate of 50%. A developing method in cancer treatment is the use of compounds that stimulate the immune system to aid in the body's fight against the disease. This project focused on the use of the potent immune stimulant double-stranded RNA (dsRNA), commercially available as polyinosinic:polycytidylic acid, poly(I:C), to induce cytotoxicity in two ovarian cancer cell lines; SKOV-3 and OVCAR-3. Some challenges exist with the delivery of dsRNA due to …


Photodynamic Therapy Of Inorganic Complexes For The Treatment Of Cancer, Chloe B. Smith, Lindsay C. Days, Duaa R. Alajroush, Khadija Faye, Yara Khodour, Stephen J. Beebe, Alvin Holder Jan 2021

Photodynamic Therapy Of Inorganic Complexes For The Treatment Of Cancer, Chloe B. Smith, Lindsay C. Days, Duaa R. Alajroush, Khadija Faye, Yara Khodour, Stephen J. Beebe, Alvin Holder

Chemistry & Biochemistry Faculty Publications

Photodynamic therapy (PDT) is a medicinal tool that uses a photosensitiser and a light source to treat several conditions, including cancer. PDT uses reactive oxygen species (ROS) such as cytotoxic singlet oxygen 1O2 to induce cell death in cancer cells. Chemotherapy has historically utilized the cytotoxic effects of many metals, especially transition-metal complexes. However, chemotherapy is a systemic treatment so all cells in a patient's body are exposed to the same cytotoxic effects. Transition metal complexes have also shown high cytotoxicity as PDT agents. PDT is a potential localized method for treating several cancer types by using inorganic …