Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

2021

Washington University in St. Louis

Diabetes

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Midfoot And Ankle Movement Dysfunction In People With Diabetes Mellitus And Peripheral Neuropathy, Hyo Jung Jeong Jan 2021

Midfoot And Ankle Movement Dysfunction In People With Diabetes Mellitus And Peripheral Neuropathy, Hyo Jung Jeong

Arts & Sciences Electronic Theses and Dissertations

People with diabetes mellitus and peripheral neuropathy (DMPN) have midfoot and ankle musculoskeletal problems, including limited joint mobility and weakness and atrophy of foot intrinsic and calf muscles. Impaired foot structures and function could lead to midfoot and ankle movement dysfunction, measured by a heel rise task. A repeated movement dysfunction during weightbearing tasks (e.g., heel rise, walking) could cause excessive stress on the plantar tissue, which is a leading cause of plantar ulceration in people with DMPN. Understanding heel rise performance and the underlying mechanisms could help prevent the sequence of events associated with plantar ulcer development in people …


Autologous Stem Cell-Derived Β Cells For Diabetes Cell Replacement Therapy, Kristina G. Maxwell Jan 2021

Autologous Stem Cell-Derived Β Cells For Diabetes Cell Replacement Therapy, Kristina G. Maxwell

McKelvey School of Engineering Theses & Dissertations

Autologous stem cell therapy is a promising treatment for patients with diabetes worldwide. Previous stem cell-derived β (SC-β) cell protocols were unable to efficiently differentiate multiple patient induced pluripotent stem cells (iPSCs) into stem cell-derived islets (SC-islets), containing insulin-secreting SC-β cells. Recent updates targeting the actin cytoskeleton have enabled the differentiation of 14 diabetic and nondiabetic stem cell lines into SC-islets. We used genetic engineering, specifically CRISPR/Cas9, to correct the diabetes-causing mutation in stem cells from patients with Wolfram Syndrome. The genetically engineered SC-β cells functioned and had a composition similar to nondiabetic SC-β cells, unlike the unedited SC-β cells …