Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Life Sciences

In Situ Imaging Of Bacterial Outer Membrane Projections And Associated Protein Complexes Using Electron Cryo-Tomography, Mohammed Kaplan, Georges Chreifi, Lauren Ann Metskas, Janine Liedtke, Cecily R. Wood, Catherine M. Oikonomou, William J. Nicolas, Poorna Subramanian, Lori A. Zacharoff, Yuhang Wang, Yi-Wei Chang, Morgan Beeby, Megan J. Dobro, Yongtao Zhu, Mark J. Mcbride, Ariane Briegel, Carrie L. Shaffer, Grant J. Jensen Sep 2021

In Situ Imaging Of Bacterial Outer Membrane Projections And Associated Protein Complexes Using Electron Cryo-Tomography, Mohammed Kaplan, Georges Chreifi, Lauren Ann Metskas, Janine Liedtke, Cecily R. Wood, Catherine M. Oikonomou, William J. Nicolas, Poorna Subramanian, Lori A. Zacharoff, Yuhang Wang, Yi-Wei Chang, Morgan Beeby, Megan J. Dobro, Yongtao Zhu, Mark J. Mcbride, Ariane Briegel, Carrie L. Shaffer, Grant J. Jensen

Veterinary Science Faculty Publications

The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


Research Of Sustainable Jet Fuel Production Using Microbes, Rajee Olaganathan Jan 2018

Research Of Sustainable Jet Fuel Production Using Microbes, Rajee Olaganathan

Publications

Global climate change, coupled with rapidly increasing oil prices and energy demand around the world, has paved a way for intense research in the biofuel sector. Stakeholders in the aviation industry have started to focus on bio-jet fuel. Bio-jet fuel is regarded as a sustainable solution to greenhouse gas emissions and energy demand. This paper provides a brief review of the biofuel production technologies, the role of bacteria in producing hydrocarbons and the recent advancements in microbial engineering to enhance the biofuel production. Finally, this paper concludes by highlighting the challenges and future research implications in bio-jet fuel production.


A Study On The Dissolution Of Autunite Minerals By Facultative Bacteria In Bicarbonate Media, Sandra C. Herrera Landaez Apr 2016

A Study On The Dissolution Of Autunite Minerals By Facultative Bacteria In Bicarbonate Media, Sandra C. Herrera Landaez

FIU Electronic Theses and Dissertations

Uranium (U) is a key contaminant at the Hanford site. The formation of uranyl-phosphate bearing minerals such as autunite as a result of tripoliphosphate injections has been used as a U immobilization strategy. Bacteria are known as key factors governing the fate and transport of soil contaminants. This research evaluated the interaction of facultative bacteria Shewanella Oneidensis MR-1 with autunite mineral in bicarbonate-amended media solutions. The concentration of several elements such as U, calcium (Ca) and phosphorous (P) released as a result of autunite mineral biodissolution were determined as a function of time; changes in cell density and protein assay …


Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo Jan 2014

Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo

Mechanical & Aerospace Engineering Faculty Publications

Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any …


Characterization Of Xylan Utilization And Discovery Of A New Endoxylanase In Thermoanaerobacterium Saccharolyticum Through Targeted Gene Deletions, Kara K. Podkaminer, Adam M. Guss, Heather L. Trajano, David A. Hogsett, Lee R. Lynd Sep 2012

Characterization Of Xylan Utilization And Discovery Of A New Endoxylanase In Thermoanaerobacterium Saccharolyticum Through Targeted Gene Deletions, Kara K. Podkaminer, Adam M. Guss, Heather L. Trajano, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

The economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydrolysis. Recent metabolic engineering efforts have resulted in a strain of Thermoanaerobacterium saccharolyticum that can convert C5 and C6 sugars, as well as insoluble xylan, into ethanol at high yield. To better understand the process of xylan solubilization in this organism, a series of targeted deletions were constructed in the homoethanologenic T. saccharolyticum strain M0355 to characterize xylan hydrolysis and xylose utilization in this organism. While the deletion of …


High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Sep 2011

High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of …


Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Aug 2010

Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

We report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The ΔpyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection. Furthermore, 5-FOA was used to select against plasmid-expressed pyrF, creating a negative selection for plasmid loss. This technology was used to delete a gene involved in organic acid production, namely pta, which encodes …


Identification Of The [Fefe]-Hydrogenase Responsible For Hydrogen Generation In Thermoanaerobacterium Saccharolyticum And Demonstration Of Increased Ethanol Yield Via Hydrogenase Knockout, A. Joe Shaw, David A. Hogsett, Lee R. Lynd Oct 2009

Identification Of The [Fefe]-Hydrogenase Responsible For Hydrogen Generation In Thermoanaerobacterium Saccharolyticum And Demonstration Of Increased Ethanol Yield Via Hydrogenase Knockout, A. Joe Shaw, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

Three putative hydrogenase enzyme systems in Thermoanaerobacterium saccharolyticum were investigated at the genetic, mRNA, enzymatic, and phenotypic levels. A four-gene operon containing two [FeFe]-hydrogenase genes, provisionally termed hfs (hydrogenase-Fe-S), was found to be the main enzymatic catalyst of hydrogen production. hfsB, perhaps the most interesting gene of the operon, contains an [FeFe]-hydrogenase and a PAS sensory domain and has several conserved homologues among clostridial saccharolytic, cellulolytic, and pathogenic bacteria. A second hydrogenase gene cluster, hyd, exhibited methyl viologen-linked hydrogenase enzymatic activity, but hyd gene knockouts did not influence the hydrogen yield of …


Characterization Of Dairy Milk House Waste Water In Kentucky, Anshu Singh, Czarena L. Crofcheck, Gail M. Brion Mar 2007

Characterization Of Dairy Milk House Waste Water In Kentucky, Anshu Singh, Czarena L. Crofcheck, Gail M. Brion

Biosystems and Agricultural Engineering Faculty Publications

This study focuses on characterization of milk house waste water from eight different farms in Kentucky. The farms were separated into three groups based on the number of cows: small (20-30), medium (30-60), and large (over 60 cows). Samples were collected once a month from four farms and twice a month from the remainder. Samples were analyzed for chemical, biochemical, and microbiological characteristics. Results indicated a large and significant variation in the chemical and microbiological characteristics between the farms. Farm size had a significant effect on the nutrient content of the waste water. Though samples exhibited seasonal variation, there was …


Microbial Cellulose Utilization: Fundamentals And Biotechnology, Lee R. Lynd, Paul J. Weimer, Willem H. Van Zyl, Isak S. Pretorius Sep 2002

Microbial Cellulose Utilization: Fundamentals And Biotechnology, Lee R. Lynd, Paul J. Weimer, Willem H. Van Zyl, Isak S. Pretorius

Dartmouth Scholarship

Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial …