Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Microengineering The Neural Tube, Christopher Demers Aug 2015

Microengineering The Neural Tube, Christopher Demers

Electronic Theses and Dissertations

Early embryonic development is a complex and highly regulated orchestra of instructive cues that collectively guide naïve stem cells towards progressively more specialized fates. In the neural tube, the precursor structure to the brain and spinal cord, these signals emanate from ‘organizing centers’ surrounding the neural tube. These organizing centers send out soluble cues or morphogens that diffuse tens to hundreds of microns to recipient cells residing in the neural tube. Re-creating this dynamic landscape of cues in vitro is impossible using standard cell culture tools and techniques. However, microfluidics is perfectly suited to fill this gap, allowing precise control …


Towards Closed-Loop Deep Brain Stimulation: Behavior Recognition From Human Stn, Soroush Niketeghad Jan 2015

Towards Closed-Loop Deep Brain Stimulation: Behavior Recognition From Human Stn, Soroush Niketeghad

Electronic Theses and Dissertations

Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the …


Studies Related To Microbially Induced Corrosion Of Stainless Steel 304 And 316, Somil Gupta Jan 2015

Studies Related To Microbially Induced Corrosion Of Stainless Steel 304 And 316, Somil Gupta

Electronic Theses and Dissertations

Pitting corrosion of stainless steel (SS) is observed in many different industries including the dairy industry. It is of concern, because it weakens the steel, and can cause cracking. Any replacement or repair of SS equipment is very costly and also causes delays in product manufacture. Microbial Induced Corrosion (MIC) is a possible accelerator of natural corrosion seen in galvanized steel pipes. Studies have shown a correlation between surface roughness and the ability of bacteria to colonize and form biofilms. Dairy industry utilizes higher food grade SS 304 and 316. However, even these relatively corrosion resistant stainless steel grades may …