Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Design And Development Of Seed Hydration Analyzing Device And Its Utilization In Studying Cereal And Legume Hydration, Vinay Kumar Mannam Dec 2013

Design And Development Of Seed Hydration Analyzing Device And Its Utilization In Studying Cereal And Legume Hydration, Vinay Kumar Mannam

Doctoral Dissertations

Cereals and legumes are important sources of vegetable-based human nutrition. Together they account for 48.6 % of protein and 8.7 % carbohydrate consumption around the world. During preparation, majority of these agricultural staples are re-hydrated to aid in their digestibility, palatability and the bio-availability of the nutrients.

Study of hydration kinetics of cereals and legumes is an important and valuable necessity for industry and academia to understand and gain insights into seed hydration characteristics. An automatic seed hydration analyzing system is developed as a solution for lack of instruments with broad capabilities to study variety of seed properties. The device …


Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce Aug 2013

Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce

Doctoral Dissertations

Advanced biofuels that are “drop-in” ready, completely fungible with petroleum fuels, and require minimal infrastructure to process a finished fuel could provide transportation fuels in rural or developing areas. Five oils extracted from Pittosporum resiniferum, Copaifera reticulata, and surrogate oils for Cymbopogon flexuosus, C. martinii, and Dictamnus albus in B20 blends were sent for ASTM International biodiesel testing and run in homogenous charge combustion ignition engines to determine combustion properties and emissions. All oils tested lowered cloud point. Oils derived from Copaifera reticulata also lowered indicated specific fuel consumption and had emissions similar to the ultra-low sulfur diesel control. Characterization …


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput May 2013

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the …


Multiscale Modeling Of Enzyme-Catalyzed Methanol Production By Particulate Methane Monooxygenase, Katherine K. Bearden Apr 2013

Multiscale Modeling Of Enzyme-Catalyzed Methanol Production By Particulate Methane Monooxygenase, Katherine K. Bearden

Doctoral Dissertations

In this work, the conversion of methane to methanol by the particulate Methane Monooxygenase (pMMO) enzyme is investigated using a multi-scale modeling approach. This enzyme participates in carbon cycling and aids in the removal of harmful atmospheric methane, converting it to methanol. The interaction between pMMO and a neighboring enzyme that is present in the same organism is studied, and the unknown pMMO active site is elucidated and tested for methane oxidation towards the production of methanol.

Fundamental knowledge of pMMO's mechanism is not fully understood. Understanding how this enzyme works in nature will provide information towards designing efficient synthetic …


Engineering Microenvironments To Modulate Calcium Information Processing In Neuronal Cells, Kinsey Cotton Kelly Jan 2013

Engineering Microenvironments To Modulate Calcium Information Processing In Neuronal Cells, Kinsey Cotton Kelly

Doctoral Dissertations

Tissue engineered microenvironments were constructed to test the effects glial cells have on calcium information processing, and to mimic conditions in vivo for tumor invasion and residual cancer after resection of tumor. Submaximal, nM, glutamate (GLU) stimuli were applied to the engineered environments, and the resulting calcium dynamic behavior of neuronal cells was measured to help predict and interpret chaotic systems in the experimental realm. Calcium is a key signaling ion which signals through the N-methyl-D-aspartate (NMDA) glutamate receptor on the neuronal membrane. GLU binding to the NMDA receptor (NMDAR) causes a large and dynamic increase in neuronal intracellular calcium. …