Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

The Application Of Mathematical Optimization And Flavor-Detection Technologies For Modeling Aroma Of Hops, Yutong Liu Dec 2021

The Application Of Mathematical Optimization And Flavor-Detection Technologies For Modeling Aroma Of Hops, Yutong Liu

Department of Food Science and Technology: Dissertations, Theses, and Student Research

In recent years, proprietary hops (Citra, Simcoe, and Mosaic) become the most sought-after hops among brewers due to their excellent aroma. However, they are restricted to the owners unless other growers purchase the costly licensing agreements. Many public hops are available to the growers without any additional costs, but their aroma is difficult to match to the proprietary hops. Although proprietary and public hop varieties are unique in their aroma profiles, all hops varieties contain similar volatile compounds, merely differ in the quantity of different individual compounds. The main objective of this thesis was to investigate the feasibility of matching …


Research Tools And Their Uses For Determining The Thermal Inactivation Kinetics Of Salmonella In Low-Moisture Foods, Soon Kiat Lau Apr 2020

Research Tools And Their Uses For Determining The Thermal Inactivation Kinetics Of Salmonella In Low-Moisture Foods, Soon Kiat Lau

Department of Food Science and Technology: Dissertations, Theses, and Student Research

The reputation of low-moisture foods as safe foods has been crumbling over the past decade due to repeated involvement in foodborne illness outbreaks. Although various pasteurization technologies exist, a majority are thermal processes and have not been well-characterized for pasteurizing low-moisture foods. In addition, the nature of a low-moisture food matrix introduces various experimental complications that are not encountered in high-moisture foods. In this dissertation, the development, building instructions, and characterization of various open source tools for studying the inactivation kinetics of microorganisms in low-moisture foods are described. The first tool is the TDT Sandwich, a dry heating device for …


Simulation And Validation Of Radio Frequency Heating Of Shell Eggs, Soon Kiat Lau Jul 2015

Simulation And Validation Of Radio Frequency Heating Of Shell Eggs, Soon Kiat Lau

Department of Food Science and Technology: Dissertations, Theses, and Student Research

Finite element models were developed with the purpose of finding an optimal radio frequency (RF) heating setup for pasteurizing shell eggs. Material properties of the yolk, albumen, and shell were measured and fitted into equations that were used as inputs for the model. When the egg was heated by itself, heating tend to be focused at the air cell to result in a “coagulation ring.” The focused heating near the air cell of the egg prevented satisfactory pasteurization of the egg, but deeper analysis of the simulation results offered a new perspective on how non-uniform RF heating could occur in …


A Finite Element Method Based Microwave Heat Transfer Modeling Of Frozen Multi-Component Foods, Krishnamoorthy Pitchai Apr 2015

A Finite Element Method Based Microwave Heat Transfer Modeling Of Frozen Multi-Component Foods, Krishnamoorthy Pitchai

Department of Food Science and Technology: Dissertations, Theses, and Student Research

Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on “cook-and-look” approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of …


Starch-Pectin Matrices For Encapsulation Of Ascorbic Acid, Yiwei Liu May 2014

Starch-Pectin Matrices For Encapsulation Of Ascorbic Acid, Yiwei Liu

Department of Food Science and Technology: Dissertations, Theses, and Student Research

Starch and pectin are two food-grade carbohydrates widely utilized in the food industry. Starch and pectin polymers have been investigated in encapsulating functional food ingredients and in pharmaceutical applications. Resistance to enzyme hydrolysis, differential solubilities, depending on the pH, and the ability to ‘protect’ unstable molecules are considered some of the beneficial properties of starch and pectin polymers, for encapsulation applications. Food ingredients could be delivered in a controlled manner to a specific target by encapsulating in micro-scale particles, i. e., microencapsulation. Two studies were conducted to investigate the ability of selected starch-pectin blends in microencapsulating ascorbic acid (vitamin C) …


Electromagnetic And Heat Transfer Modeling Of Microwave Heating In Domestic Ovens, Krishnamoorthy Pitchai Apr 2011

Electromagnetic And Heat Transfer Modeling Of Microwave Heating In Domestic Ovens, Krishnamoorthy Pitchai

Department of Food Science and Technology: Dissertations, Theses, and Student Research

Microwave (MW) ovens are used extensively for heating a variety of not-ready-to-eat food products. It is vital to achieve target temperature uniformly throughout the food to inactivate foodborne pathogens to assure safety. Non-uniform heating of foods in microwave ovens is the major concern in assuring microbiological safety of such products. The non-uniform heating of foods in domestic microwave ovens is due to complex interactions of microwaves with foods. A comprehensive coupled electromagnetic and heat transfer model was developed using finite-difference time-domain based numerical method to understand the complex interaction of microwaves with foods. Simulation parameters such as cell size, heating …