Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Development And Characterization Of Nano Nickel-Based Conductive Inks For Flexographic Printing Of Electronics And New Interpretations Of Surface Energies Of Solids, Bilge N. Altay Nov 2018

Development And Characterization Of Nano Nickel-Based Conductive Inks For Flexographic Printing Of Electronics And New Interpretations Of Surface Energies Of Solids, Bilge N. Altay

Bilge Nazli Altay

Traditional printing technologies and conductive/functional inks have been integrated to print electronic devices and circuits on really think, lightweight and flexible materials in a time and cost-effective manner. Printing is an additive manufacturing technology, which selectively deposits materials only where needed to produce a wide range of devices including sensors, smart packaging, solar panels, batteries, light sources and wearable electronics. Therefore, it greatly reduces the number of required steps for manufacturing as well as the amount of waste generated relative to conventional electronic manufacturing. However, the process requirements and ink formulations to print electronics differ from graphic printing; therefore, the …


Microtubule Seams Are Not Mechanically Weak Defects, Taviare Hawkins Jun 2018

Microtubule Seams Are Not Mechanically Weak Defects, Taviare Hawkins

Physics Faculty Scholarship

Microtubule rigidity is important for many cellular functions to support extended structures and rearrange materials within the cell. The arrangement of the tubulin dimers within the microtubule can be altered to affect the protofilament number and the lattice type. Prior electron microscopy measurements have shown that when polymerized in the presence of a high concentration of NaCl, microtubules were more likely to be ten protofilaments with altered intertubulin lattice types. Specifically, such high-salt microtubules have a higher percentage of seam defects. Such seams have long been speculated to be a mechanically weak location in the microtubule lattice, yet no experimental …