Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Old Dominion University

Bioelectrics Publications

Membrane potentials

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach Jan 2005

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV∕cm), ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the …


Self-Consistent Simulations Of Electroporation Dynamics In Biological Cells Subjected To Ultrashort Electrical Pulses, R. P. Joshi, Q. Hu, R. Aly, K. H. Schoenbach, H. P. Hjalmarson Jan 2001

Self-Consistent Simulations Of Electroporation Dynamics In Biological Cells Subjected To Ultrashort Electrical Pulses, R. P. Joshi, Q. Hu, R. Aly, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

The temporal dynamics of electroporation of cells subjected to ultrashort voltage pulses are studied based on a coupled scheme involving the Laplace, Nernst-Plank, and Smoluchowski equations. A pore radius dependent energy barrier for ionic transport, accounts for cellular variations. It is shown that a finite time delay exists in pore formation, and leads to a transient overshoot of the transmembrane potential Vmem beyond 1.0 V. Pore resealing is shown to consist of an initial fast process, a 10−4s delay, followed by a much slower closing at a time constant of about 10 −1s. This establishes a …