Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Old Dominion University

Bioelectrics Publications

Ion channels

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Emerging Roles Of The Membrane Potential: Action Beyond The Action Potential, Lina Abdul Kadir, Michael Stacey, Richard Barrett-Jolley Nov 2018

Emerging Roles Of The Membrane Potential: Action Beyond The Action Potential, Lina Abdul Kadir, Michael Stacey, Richard Barrett-Jolley

Bioelectrics Publications

Whilst the phenomenon of an electrical resting membrane potential (RMP) is a central tenet of biology, it is nearly always discussed as a phenomenon that facilitates the propagation of action potentials in excitable tissue, muscle, and nerve. However, as ion channel research shifts beyond these tissues, it became clear that the RMP is a feature of virtually all cells studied. The RMP is maintained by the cell's compliment of ion channels. Transcriptome sequencing is increasingly revealing that equally rich compliments of ion channels exist in both excitable and non-excitable tissue. In this review, we discuss a range of critical roles …


Self-Consistent Analyses For Potential Conduction Block In Nerves By An Ultrashort High-Intensity Electric Pulse, R. P. Joshi, A. Mishra, Q. Hu, K. H. Schoenbach, A. Pakhomov Jan 2007

Self-Consistent Analyses For Potential Conduction Block In Nerves By An Ultrashort High-Intensity Electric Pulse, R. P. Joshi, A. Mishra, Q. Hu, K. H. Schoenbach, A. Pakhomov

Bioelectrics Publications

Simulation studies are presented that probe the possibility of using high-field (>100kV ∕ cm), short-duration (∼50ns) electrical pulses for nonthermal and reversible cessation of biological electrical signaling pathways. This would have obvious applications in neurophysiology, clinical research, neuromuscular stimulation therapies, and even nonlethal bioweapons development. The concept is based on the creation of a sufficiently high density of pores on the nerve membrane by an electric pulse. This modulates membrane conductance and presents an effective "electrical short" to an incident voltage wave traveling across a nerve. Net blocking of action potential propagation can then result. A continuum approach based …