Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Spatial Scaling Of Avian Population Dynamics: Population Abundance, Growth Rate, And Variability, Jason Jones, Patrick J. Doran, Richard T. Holmes Oct 2007

Spatial Scaling Of Avian Population Dynamics: Population Abundance, Growth Rate, And Variability, Jason Jones, Patrick J. Doran, Richard T. Holmes

Dartmouth Scholarship

Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local‐scale (<15‐km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty‐four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (ρ) = 0.15; mean spatial extent (mean distance where ρ = 0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short‐distance migrants exhibited more spatially extensive synchrony in population variability than either year‐round residents or long‐distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.


Changes In Nitrogen Cycling During The Past Century In A Northern Hardwood Forest, Kendra K. Mclauchlan, Joseph M. Craine, W. Wyatt Oswald, Peter R. Leavitt, Gene E. Likens May 2007

Changes In Nitrogen Cycling During The Past Century In A Northern Hardwood Forest, Kendra K. Mclauchlan, Joseph M. Craine, W. Wyatt Oswald, Peter R. Leavitt, Gene E. Likens

Dartmouth Scholarship

Nitrogen (N) availability, defined here as the supply of N to terrestrial plants and soil microorganisms relative to their N demands, limits the productivity of many temperate zone forests and in part determines ecosystem carbon (C) content. Despite multidecadal monitoring of N in streams, the long-term record of N availability in forests of the northeastern United States is largely unknown. Therefore, although these forests have been receiving anthropogenic N deposition for the past few decades, it is still uncertain whether terrestrial N availability has changed during this time and, subsequently, whether forest ecosystems have responded to increased N deposition. Here, …


Impact Of Minimum Winter Temperatures On The Population Dynamics Of Dendroctonus Frontalis, J. KhảI TrầN, Tiina Ylioja, Ronald F. Billings, Jacques Régnière, Matthew P. Ayres Apr 2007

Impact Of Minimum Winter Temperatures On The Population Dynamics Of Dendroctonus Frontalis, J. KhảI TrầN, Tiina Ylioja, Ronald F. Billings, Jacques Régnière, Matthew P. Ayres

Dartmouth Scholarship

Predicting population dynamics is a fundamental problem in applied ecology. Temperature is a potential driver of short-term population dynamics, and temperature data are widely available, but we generally lack validated models to predict dynamics based upon temperatures. A generalized approach involves estimating the temperatures experienced by a population, characterizing the demographic consequences of physiological responses to temperature, and testing for predicted effects on abundance. We employed this approach to test whether minimum winter temperatures are a meaningful driver of pestilence from Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A distance-weighted interpolation model provided good, spatially explicit, …