Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Effects Of Elevated Co2, Increased Nitrogen Deposition, And Plant Diversity On Aboveground Litter And Root Decomposition, Xiaoan Zuo, Johannes Knops Feb 2018

Effects Of Elevated Co2, Increased Nitrogen Deposition, And Plant Diversity On Aboveground Litter And Root Decomposition, Xiaoan Zuo, Johannes Knops

School of Biological Sciences: Faculty Publications

Global change-induced litter decomposition strongly affects the carbon (C) and nitrogen (N) dynamics in grassland ecosystems. However, few studies show the interactive effects of global change factors on litter and root decomposition. We conducted a four-year grassland field experiment to examine the quality and decomposition of litter and root in a three-factorial experiment with elevated CO2, increased N deposition, and plant species richness. We found that elevated CO2 decreased the litter N content and root lignin content. N addition increased the root N content and decreased the litter lignin content. Increasing plant richness decreased the N and …


Local Loss And Spatial Homogenization Of Plant Diversity Reduce Ecosystem Multifunctionality, Yann Hautier, Forest Isbell, Elizabeth T. Borer, Eric W. Seabloom, W. Stanley Harpole, Eric M. Lind, Andrew S. Macdougall, Carly J. Stevens, Peter B. Adler, Juan Alberti, Jonathan D. Bakker, Lars A. Brudvig, Yvonne M. Buckley, Marc Cadotte, Maria C. Caldeira, Enrique J. Chaneton, Chengjin Chu, Pedro Daleo, Christopher R. Dickman, John M. Dwyer, Anu Eskelinen, Philip A Fay, Jennifer Firn, Nicole Hagenah, Helmut Hillebrand, Oscar Iribarne, Kevin P. Kirkman, Johannes M. H. Knops, Kimberly J. La Pierre, Rebecca L. Mcculley Jan 2018

Local Loss And Spatial Homogenization Of Plant Diversity Reduce Ecosystem Multifunctionality, Yann Hautier, Forest Isbell, Elizabeth T. Borer, Eric W. Seabloom, W. Stanley Harpole, Eric M. Lind, Andrew S. Macdougall, Carly J. Stevens, Peter B. Adler, Juan Alberti, Jonathan D. Bakker, Lars A. Brudvig, Yvonne M. Buckley, Marc Cadotte, Maria C. Caldeira, Enrique J. Chaneton, Chengjin Chu, Pedro Daleo, Christopher R. Dickman, John M. Dwyer, Anu Eskelinen, Philip A Fay, Jennifer Firn, Nicole Hagenah, Helmut Hillebrand, Oscar Iribarne, Kevin P. Kirkman, Johannes M. H. Knops, Kimberly J. La Pierre, Rebecca L. Mcculley

Plant and Soil Sciences Faculty Publications

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands—those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)—had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected …


Can Increasing Grass-Fungal Endophyte Symbiotic Diversity Enhance Grassland Ecosystem Functioning?, Mahtaab Bagherzadeh Jan 2018

Can Increasing Grass-Fungal Endophyte Symbiotic Diversity Enhance Grassland Ecosystem Functioning?, Mahtaab Bagherzadeh

Theses and Dissertations--Plant and Soil Sciences

The relationship between biodiversity and ecosystem functioning is important in maintaining agroecosystem sustainability. Plant-microbe symbioses, such as exists between the grass tall fescue (Schedonorus arundinaceum) and the asexual fungal endophyte Epichloë coenophiala, can be utilized to enhance agroecosystem functions, such as herbivore resistance. “Novel” E. coenophiala strains that vary in the production of mammal- and insect-toxic compounds have been identified, inserted into tall fescue cultivars, and are planted in pastures globally. Novel fungal endophyte-tall fescue associations may have divergent ecosystem function effects. This study assessed effects of different fescue-endophyte symbiotic combinations on pasture ecosystem function, including aboveground …