Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Genomic Epidemiology Of Clostridium Difficile Colonization And Transmission In An Intensive Care Unit Cohort, Brianne Ciferri Dec 2021

Genomic Epidemiology Of Clostridium Difficile Colonization And Transmission In An Intensive Care Unit Cohort, Brianne Ciferri

Dissertations and Theses

Abstract

Genomic epidemiology of Clostridium difficile colonization and transmission in an intensive care unit cohort

by Brianne Ciferri, MPH

Advisor: C. Mary Schooling, PhD

Introduction: Clostridiodes difficile (C. difficile) is a leading cause of healthcare associated infections (HAI) in the United States and responsible for an estimated incidence of 223,900 cases and 12,800 deaths per year1,2. C. difficile can cause gastrointestinal illness with symptoms ranging from mild diarrheal illness to a life-threatening condition. C. difficile is an opportunistic pathogen in which spores can live in an undisturbed dormant state within the intestinal tract and become …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …