Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Data-Driven Biomarker Panel Discovery In Ovarian Cancer Using Heterogenous Data Fusion On Exosomal And Non-Exosomal Microrna Expression Data, Paritra Mandal Dec 2022

Data-Driven Biomarker Panel Discovery In Ovarian Cancer Using Heterogenous Data Fusion On Exosomal And Non-Exosomal Microrna Expression Data, Paritra Mandal

All Dissertations

Ovarian cancer (OC) is an aggressive gynecological cancer and is currently the 5th leading cause of deaths due to cancer in women. High mortality rates are attributable to the vague pathogenesis and asymptomatic nature of the early stages. The development of a liquid biopsy for routine OC screening could help identify the disease at an earlier stage, making treatments more likely to be effective thereby increasing survival rates. Exosomes, small (~100nm) extracellular vesicles present in body fluids, have been shown to contain cancer-progression, onset, and related factors, making them good candidates for use in liquid biopsies. However, to date, only …


Radioluminescence Based Biochemical Sensing And Imaging Strategies To Measure Local Drug Release And Ph, Gretchen B. Schober Aug 2022

Radioluminescence Based Biochemical Sensing And Imaging Strategies To Measure Local Drug Release And Ph, Gretchen B. Schober

All Dissertations

In this dissertation we describe methods for measuring infection relevant biochemical analytes using radioluminescent and ultrasound luminescent materials. Films and nanoparticles fabricated with europium doped gadolinium oxysulfide (Gd2O2S:Eu3+) are used to quantitatively measure radiolabeled pharmaceutical concentration, specifically tritium labeled vancomycin (3H-vancomycin). Europium and dysprosium doped strontium aluminate is used to fabricate an ultrasound modulated, pH sensing film. These methods are indicated for theranostic evaluation of implant associated infection. Bacterial biofilms are inherently resistant to traditional antibiotic treatment and can coat biomedical implants. These biofilm related infections are difficult or impossible to eradicate …