Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Developing Inside A Layer Of Germs—A Potential Role For Multiciliated Surface Cells In Vertebrate Embryos, Ryan R. Kerney Oct 2021

Developing Inside A Layer Of Germs—A Potential Role For Multiciliated Surface Cells In Vertebrate Embryos, Ryan R. Kerney

Biology Faculty Publications

This paper reviews current research on the microbial life that surrounds vertebrate embryos. Several clades are believed to develop inside sterile—or near-sterile—embryonic microhabitats, while others thrive within a veritable zoo of microbial life. The occurrence of embryo-associated microbes in some groups, but not others, is an under-appreciated transition (possibly transitions) in vertebrate evolution. A lack of comparable studies makes it currently impossible to correlate embryo-associated microbiomes with other aspects of vertebrate evolution. However, there are embryonic features that should instruct a more targeted survey. This paper concludes with a hypothesis for the role of multiciliated surface cells in amphibian and …


Transciptome Analysis Illuminates The Nature Of The Intracellular Interaction In A Vertebrate-Algal Symbiosis, John A. Burns, Huanjia Zhang, Elizabeth M. Hill, Eunsoo Kim, Ryan R. Kerney May 2017

Transciptome Analysis Illuminates The Nature Of The Intracellular Interaction In A Vertebrate-Algal Symbiosis, John A. Burns, Huanjia Zhang, Elizabeth M. Hill, Eunsoo Kim, Ryan R. Kerney

Biology Faculty Publications

During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in …


Mating Patterns And Post-Mating Isolation In Three Cryptic Species Of The Engystomops Petersi Species Complex, Paula A. Trillo, Andrea E. Narvaez, Santiago R. Ron, Kim L. Hoke Apr 2017

Mating Patterns And Post-Mating Isolation In Three Cryptic Species Of The Engystomops Petersi Species Complex, Paula A. Trillo, Andrea E. Narvaez, Santiago R. Ron, Kim L. Hoke

Biology Faculty Publications

Determining the extent of reproductive isolation in cryptic species with dynamic geographic ranges can yield important insights into the processes that generate and maintain genetic divergence in the absence of severe geographic barriers. We studied mating patterns, propensity to hybridize in nature and subsequent fertilization rates, as well as survival and development of hybrid F1 offspring for three nominal species of the Engystomops petersi species complex in Yasuní National Park, Ecuador. We found at least two species in four out of six locations sampled, and 14.3% of the wild pairs genotyped were mixed-species (heterospecific) crosses. We also found reduced …


Germline Transgenic Methods For Tracking Cells And Testing Gene Function During Regeneration In The Axolotl, Shahryar Khattak, Maritta Schuez, Tobias Richter, Dunja Knapp, Saori L. Haigo, Tatiana Sandoval-Guzmán, Kristyna Hradlikova, Annett Duemmler, Ryan R. Kerney, Elly M. Tanaka Jun 2013

Germline Transgenic Methods For Tracking Cells And Testing Gene Function During Regeneration In The Axolotl, Shahryar Khattak, Maritta Schuez, Tobias Richter, Dunja Knapp, Saori L. Haigo, Tatiana Sandoval-Guzmán, Kristyna Hradlikova, Annett Duemmler, Ryan R. Kerney, Elly M. Tanaka

Biology Faculty Publications

The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum(axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly …


Cartilage On The Move: Cartilage Lineage Tracing During Tadpole Metamorphosis, Ryan R. Kerney, Alison L. Brittain, Brian K. Hall, Daniel R. Buchholz Oct 2012

Cartilage On The Move: Cartilage Lineage Tracing During Tadpole Metamorphosis, Ryan R. Kerney, Alison L. Brittain, Brian K. Hall, Daniel R. Buchholz

Biology Faculty Publications

The reorganization of cranial cartilages during tadpole metamorphosis is a set of complex processes. The fates of larval cartilage-forming cells (chondrocytes) and sources of adult chondrocytes are largely unknown. Individual larval cranial cartilages may either degenerate or remodel, while many adult cartilages appear to form de novo during metamorphosis. Determining the extent to which adult chondrocytes/cartilages are derived from larval chondrocytes during metamorphosis requires new techniques in chondrocyte lineage tracing. We have developed two transgenic systems to label cartilage cells throughout the body with fluorescent proteins. One system strongly labels early tadpole cartilages only. The other system inducibly labels forming …