Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Use Of Chloramines To Eradicate Quagga Mussel Larvae, Trea Lacroix, Kumud Acharya Aug 2011

The Use Of Chloramines To Eradicate Quagga Mussel Larvae, Trea Lacroix, Kumud Acharya

Undergraduate Research Opportunities Program (UROP)

Quagga Mussels, Dressenia bugensis, are a growing problem in the western United States, particularly in their ability to infest underwater infrastructures and clog water intake pipes and screens of power and treatment plants. Chlorine has been found to be the most effective chemical to get rid of veligers (planktonic larval form of quagga mussels) in the pipes. However, chlorine leaves a residue called trihalomethane, which is a carcinogen at higher concentrations. The purpose of this project is to test the effectiveness of an alternate chemical, chloramines (chlorine and ammonia), which leaves behind little to no residual trihalomethane. Upon experimentation with …


Oral Presentation: Plant Genes And Drought Tolerance, Norris Lam Apr 2011

Oral Presentation: Plant Genes And Drought Tolerance, Norris Lam

Festival of Communities: UG Symposium (Posters)

Research has shown that a gene from C3 xerophyte Larrea tridentata (creosote bush), LtWRKY21, is involved in pathways governing creosote bush’s high tolerance to environmental stress. By understanding the way in which creosote bush adapts to drought, crop plants can be engineered to be more drought tolerant during times of imminent global climate change. To study the underlying mechanisms of creosote bush drought response, the LtWRKY21 gene was mobilized into the model organism Arabidopsis thaliana. Chlorophyll degradation, cellular electrolyte leakage, and water content in leaves will serve as indicators of drought tolerance in LtWRKY21-transgenic A. thaliana after treatment in chemically …