Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Deep learning

New Jersey Institute of Technology

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Model-Based Deep Autoencoders For Clustering Single-Cell Rna Sequencing Data With Side Information, Xiang Lin Dec 2023

Model-Based Deep Autoencoders For Clustering Single-Cell Rna Sequencing Data With Side Information, Xiang Lin

Dissertations

Clustering analysis has been conducted extensively in single-cell RNA sequencing (scRNA-seq) studies. scRNA-seq can profile tens of thousands of genes' activities within a single cell. Thousands or tens of thousands of cells can be captured simultaneously in a typical scRNA-seq experiment. Biologists would like to cluster these cells for exploring and elucidating cell types or subtypes. Numerous methods have been designed for clustering scRNA-seq data. Yet, single-cell technologies develop so fast in the past few years that those existing methods do not catch up with these rapid changes and fail to fully fulfil their potential. For instance, besides profiling transcription …


Development Of Deep Learning Neural Network For Ecological And Medical Images, Shaobo Liu May 2021

Development Of Deep Learning Neural Network For Ecological And Medical Images, Shaobo Liu

Dissertations

Deep learning in computer vision and image processing has attracted attentions from various fields including ecology and medical image. Ecologists are interested in finding an effective model structure to classify different species. Tradition deep learning model use a convolutional neural network, such as LeNet, AlexNet, VGG models, residual neural network, and inception models, are first used on classifying bee wing and butterfly datasets. However, insufficient data sample and unbalanced samples in each class have caused a poor accuracy. To make improvement the test accuracy, data augmentation and transfer learning are applied. Recently developed deep learning framework based on mathematical morphology …


Model-Based Deep Autoencoders For Characterizing Discrete Data With Application To Genomic Data Analysis, Tian Tian May 2019

Model-Based Deep Autoencoders For Characterizing Discrete Data With Application To Genomic Data Analysis, Tian Tian

Dissertations

Deep learning techniques have achieved tremendous successes in a wide range of real applications in recent years. For dimension reduction, deep neural networks (DNNs) provide a natural choice to parameterize a non-linear transforming function that maps the original high dimensional data to a lower dimensional latent space. Autoencoder is a kind of DNNs used to learn efficient feature representation in an unsupervised manner. Deep autoencoder has been widely explored and applied to analysis of continuous data, while it is understudied for characterizing discrete data. This dissertation focuses on developing model-based deep autoencoders for modeling discrete data. A motivating example of …