Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

A Mitochondrial Dna-Based Computational Model Of The Spread Of Human Populations, Peter Revesz Mar 2016

A Mitochondrial Dna-Based Computational Model Of The Spread Of Human Populations, Peter Revesz

School of Computing: Faculty Publications

This paper presents a mitochondrial DNA-based computational model of the spread of human populations. The computation model is based on a new measure of the relatedness of two populations that may be both heterogeneous in terms of their set of mtDNA haplogroups. The measure gives an exponentially increasing weight for the similarity of two haplogroups with the number of levels shared in the mtDNA classification tree. In an experiment, the computational model is applied to the study of the relatedness of seven human populations ranging from the Neolithic through the Bronze Age to the present. The human populations included in …


A Gene-Based Association Method For Mapping Traits Using Reference Transcriptome Data, Eric R. Gamazon, Heather Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-Michaels, Robert J. Carroll, Anne E. Eyler, Joshua C. Denny, Gtex Consortium, Dan L. Nicolae, Nancy J. Cox, Hae Kyung Im Sep 2015

A Gene-Based Association Method For Mapping Traits Using Reference Transcriptome Data, Eric R. Gamazon, Heather Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-Michaels, Robert J. Carroll, Anne E. Eyler, Joshua C. Denny, Gtex Consortium, Dan L. Nicolae, Nancy J. Cox, Hae Kyung Im

Bioinformatics Faculty Publications

Genome-wide association studies (GWAS) have identified thousands of variants robustly associated with complex traits. However, the biological mechanisms underlying these associations are, in general, not well understood. We propose a gene-based association method called PrediXcan that directly tests the molecular mechanisms through which genetic variation affects phenotype. The approach estimates the component of gene expression determined by an individual’s genetic profile and correlates ‘imputed’ gene expression with the phenotype under investigation to identify genes involved in the etiology of the phenotype. Genetically regulated gene expression is estimated using whole-genome tissue-dependent prediction models trained with reference transcriptome data sets. PrediXcan enjoys …