Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

Sctiger: A Deep-Learning Method For Inferring Gene Regulatory Networks From Case Versus Control Scrna-Seq Datasets., Madison Dautle, Shaoqiang Zhang, Yong Chen Aug 2023

Sctiger: A Deep-Learning Method For Inferring Gene Regulatory Networks From Case Versus Control Scrna-Seq Datasets., Madison Dautle, Shaoqiang Zhang, Yong Chen

Faculty Scholarship for the College of Science & Mathematics

Inferring gene regulatory networks (GRNs) from single-cell RNA-seq (scRNA-seq) data is an important computational question to find regulatory mechanisms involved in fundamental cellular processes. Although many computational methods have been designed to predict GRNs from scRNA-seq data, they usually have high false positive rates and none infer GRNs by directly using the paired datasets of case-versus-control experiments. Here we present a novel deep-learning-based method, named scTIGER, for GRN detection by using the co-differential relationships of gene expression profiles in paired scRNA-seq datasets. scTIGER employs cell-type-based pseudotiming, an attention-based convolutional neural network method and permutation-based significance testing for inferring GRNs among …


Analysis Of Subtelomeric Rextal Assemblies Using Quast, Tunazzina Islam, Desh Ranjan, Mohammad Zubair, Eleanor Young, Ming Xiao, Harold Riethman Jan 2021

Analysis Of Subtelomeric Rextal Assemblies Using Quast, Tunazzina Islam, Desh Ranjan, Mohammad Zubair, Eleanor Young, Ming Xiao, Harold Riethman

Computer Science Faculty Publications

Genomic regions of high segmental duplication content and/or structural variation have led to gaps and misassemblies in the human reference sequence, and are refractory to assembly from whole-genome short-read datasets. Human subtelomere regions are highly enriched in both segmental duplication content and structural variations, and as a consequence are both impossible to assemble accurately and highly variable from individual to individual. Recently, we developed a pipeline for improved region-specific assembly called Regional Extension of Assemblies Using Linked-Reads (REXTAL). In this study, we evaluate REXTAL and genome-wide assembly (Supernova) approaches on 10X Genomics linked-reads data sets partitioned and barcoded using the …


Enhancing Timeliness Of Drug Overdose Mortality Surveillance: A Machine Learning Approach, Patrick J. Ward, Peter J. Rock, Svetla Slavova, April M. Young, Terry L. Bunn, Ramakanth Kavuluru Oct 2019

Enhancing Timeliness Of Drug Overdose Mortality Surveillance: A Machine Learning Approach, Patrick J. Ward, Peter J. Rock, Svetla Slavova, April M. Young, Terry L. Bunn, Ramakanth Kavuluru

Kentucky Injury Prevention and Research Center Faculty Publications

BACKGROUND: Timely data is key to effective public health responses to epidemics. Drug overdose deaths are identified in surveillance systems through ICD-10 codes present on death certificates. ICD-10 coding takes time, but free-text information is available on death certificates prior to ICD-10 coding. The objective of this study was to develop a machine learning method to classify free-text death certificates as drug overdoses to provide faster drug overdose mortality surveillance.

METHODS: Using 2017–2018 Kentucky death certificate data, free-text fields were tokenized and features were created from these tokens using natural language processing (NLP). Word, bigram, and trigram features were created …


Auditing Snomed Ct Hierarchical Relations Based On Lexical Features Of Concepts In Non-Lattice Subgraphs, Licong Cui, Olivier Bodenreider, Jay Shi, Guo-Qiang Zhang Feb 2018

Auditing Snomed Ct Hierarchical Relations Based On Lexical Features Of Concepts In Non-Lattice Subgraphs, Licong Cui, Olivier Bodenreider, Jay Shi, Guo-Qiang Zhang

Computer Science Faculty Publications

Objective—We introduce a structural-lexical approach for auditing SNOMED CT using a combination of non-lattice subgraphs of the underlying hierarchical relations and enriched lexical attributes of fully specified concept names. Our goal is to develop a scalable and effective approach that automatically identifies missing hierarchical IS-A relations.

Methods—Our approach involves 3 stages. In stage 1, all non-lattice subgraphs of SNOMED CT’s IS-A hierarchical relations are extracted. In stage 2, lexical attributes of fully-specified concept names in such non-lattice subgraphs are extracted. For each concept in a non-lattice subgraph, we enrich its set of attributes with attributes from its ancestor …


Ordinal Convolutional Neural Networks For Predicting Rdoc Positive Valence Psychiatric Symptom Severity Scores, Anthony Rios, Ramakanth Kavuluru Nov 2017

Ordinal Convolutional Neural Networks For Predicting Rdoc Positive Valence Psychiatric Symptom Severity Scores, Anthony Rios, Ramakanth Kavuluru

Computer Science Faculty Publications

Background—The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) provided a set of 1000 neuropsychiatric notes to participants as part of a competition to predict psychiatric symptom severity scores. This paper summarizes our methods, results, and experiences based on our participation in the second track of the shared task.

Objective—Classical methods of text classification usually fall into one of three problem types: binary, multi-class, and multi-label classification. In this effort, we study ordinal regression problems with text data where misclassifications are penalized differently based on how far apart the ground truth and model predictions are …


Predicting Mental Conditions Based On "History Of Present Illness" In Psychiatric Notes With Deep Neural Networks, Tung Tran, Ramakanth Kavuluru Nov 2017

Predicting Mental Conditions Based On "History Of Present Illness" In Psychiatric Notes With Deep Neural Networks, Tung Tran, Ramakanth Kavuluru

Computer Science Faculty Publications

Background—Applications of natural language processing to mental health notes are not common given the sensitive nature of the associated narratives. The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) changed this scenario by providing the first set of neuropsychiatric notes to participants. This study summarizes our efforts and results in proposing a novel data use case for this dataset as part of the third track in this shared task.

Objective—We explore the feasibility and effectiveness of predicting a set of common mental conditions a patient has based on the short textual description of patient’s history …


Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller Apr 2010

Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller

Life Sciences Faculty Research

Background

Minimotifs are short contiguous peptide sequences in proteins that are known to have a function in at least one other protein. One of the principal limitations in minimotif prediction is that false positives limit the usefulness of this approach. As a step toward resolving this problem we have built, implemented, and tested a new data-driven algorithm that reduces false-positive predictions.

Methodology/Principal Findings

Certain domains and minimotifs are known to be strongly associated with a known cellular process or molecular function. Therefore, we hypothesized that by restricting minimotif predictions to those where the minimotif containing protein and target protein have …


Venn, A Tool For Titrating Sequence Conservation Onto Protein Structures, Jay Vyas, Michael R. Gryk, Martin R. Schiller Oct 2009

Venn, A Tool For Titrating Sequence Conservation Onto Protein Structures, Jay Vyas, Michael R. Gryk, Martin R. Schiller

Life Sciences Faculty Research

Residue conservation is an important, established method for inferring protein function, modularity and specificity. It is important to recognize that it is the 3D spatial orientation of residues that drives sequence conservation. Considering this, we have built a new computational tool, VENN that allows researchers to interactively and graphically titrate sequence homology onto surface representations of protein structures. Our proposed titration strategies reveal critical details that are not readily identified using other existing tools. Analyses of a bZIP transcription factor and receptor recognition of Fibroblast Growth Factor using VENN revealed key specificity determinants. Weblink: http://sbtools.uchc.edu/venn/.